Skip to main content

Quantum Cryptography: A Survey

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 939))

  • 716 Accesses

Abstract

This paper represents the overview of Quantum Cryptography. Cryptography is the art of secrecy and it is the use of quantum mechanical properties to perform cryptographic tasks. It is a way of securing the channel using quantum mechanics properties. There are so many examples of quantum cryptography but the most important example is Quantum Key Distribution, which provides a solution to the breaking of various popular public key encryption and signature schemes (e.g. RSA and ElGamal). This helps to solve the security problems and also makes the communication channel is more secure. There are so many advantages of quantum cryptography, one thing is that the quantum computer gives the quadratic speed up on the general problems and second thing is that the quantum cryptography lies in the fact it allows the completion of various cryptographic tasks. That is proven to be impossible using classical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brassard, G., Crepeau, C.: Quantum bit commitment and coin tossing protocols. In: CRYPTO 1990. LNCS, vol. 537, pp. 49–61 (1991)

    Google Scholar 

  2. Chhabra, N.: Secret key generation and eavesdropping detection using quantum cryptography 3(2), 3348–3354 (2012)

    Google Scholar 

  3. Watrous, J.: Impossibility of quantum bit commitment in university of calgary. In: CPSC 519/619: Quantum Computation

    Google Scholar 

  4. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. In 68(5), 557–559 (1992). https://doi.org/10.1103/physrevlett.68.557

    Article  MathSciNet  MATH  Google Scholar 

  6. Selinger, P.: A brief survey of quantum programming languages. In: International Symposium on Functional and Logic Programming, pp. 1–6. Springer, Heidelberg, April 2004

    MATH  Google Scholar 

  7. Sofge, D.A.: A survey of quantum programming languages: history, methods, and tools. In: 2008 Second International Conference on Quantum, Nano and Micro Technologies, pp. 66–71. IEEE, February 2008

    Google Scholar 

  8. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

    Article  MathSciNet  Google Scholar 

  9. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: FOCS 2014, pp. 474–483 (2014). https://doi.org/10.1109/focs.2014.57

  10. Broadbent, A., Schaffner, C.: Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 78(1), 351–382 (2016)

    Article  MathSciNet  Google Scholar 

  11. Sanders, J.W., Zuliani, P.: Quantum programming. In: International Conference on Mathematics of Program Construction, pp. 80–99. Springer, Heidelberg (2000)

    Google Scholar 

  12. Bettelli, S., Calarco, T., Serafini, L.: Toward an architecture for quantum programming. Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys. 25(2), 181–200 (2003)

    Google Scholar 

  13. Mlnarik, H.: Operational semantics and type soundness of quantum programming language LanQ. arXiv:quant-ph/0708.0890v1 (2007)

  14. Freedman, M., Kitaev, A., Wong, Z.: Simulation of topological field theories by quantum computers. arXiv:quant-ph/0001071/v3 (2000)

  15. Mauerer, W.: Semantics and simulation of communication in quantum computing. Master’s thesis, University Erlangen-Nuremberg (2005)

    Google Scholar 

  16. Udrescu, M., Prodan, L., Vlâdutiu, M.: Using HDLs for describing quantum circuits: a framework for efficient quantum algorithm simulation. In: Proceedings of the 1st ACM Conference on Computing Frontiers. ACM Press (2004)

    Google Scholar 

  17. Gay, S.J.: Quantum programming languages: survey and bibliography. Math. Struct. Comput. Sci. 16(04), 581–600 (2006)

    Article  MathSciNet  Google Scholar 

  18. Unruh, D.: Quantum programming languages. Informatik-Forschung und Entwicklung 21(1–2), 55–63 (2006)

    Article  Google Scholar 

  19. Shrestha, S.R., Kim, Y.S.: New McEliece cryptosystem based on polar codes as a candidate for post- quantum cryptography. In: 2014 14th International Symposium on Communications and Information Technologies (ISCIT), pp. 368–372. IEEE, September 2014

    Google Scholar 

  20. Dynes, J.F., Takesue, H., Yuan, Z.L., Sharpe, A.W., Harada, K., Honjo, T., Kamada, H., Tadanaga, O., Nishida, Y., Asobe, M., Shields, A.J.: Efficient entanglement distribution over 200 kilometers. Opt. Express 17(14), 11440–11449 (2009)

    Article  Google Scholar 

  21. Los Alamos National Laboratory. http://www.physorg.com/news86020679.html

  22. Vignesh, R.S., Sudharssun, S., Kumar, K.J.: Limitations of quantum & the versatility of classical cryptography: a comparative study. In: Second International Conference on Environmental and Computer Science, ICECS 2009, pp. 333–337. IEEE, December 2009

    Google Scholar 

  23. Bennett, C.H.: Quantum cryptography: uncertainty in the service of privacy. Science 257(7), 752–753 (1992)

    Article  Google Scholar 

  24. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  Google Scholar 

  25. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices in Information Theory. In: Proceedings of the International Symposium on ISIT, p. 136. IEEE (2004)

    Google Scholar 

  26. Braun, J., Buchmann, J., Mullan, C., Wiesmaier, A.: Long term confidentiality: a survey. Des. Codes Cryptogr. 71(3), 459–478 (2014)

    Article  MathSciNet  Google Scholar 

  27. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In: Defense and Security, pp. 138–149. International Society for Optics and Photonics, May 2005

    Google Scholar 

  28. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J.F., Fasel, S.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  Google Scholar 

  29. Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC quantum-key-distribution network in Vienna. Int. J. Quant. Inf. 6(02), 209–218 (2008)

    Article  Google Scholar 

  30. Stucki, D., Legre, M., Buntschu, F., Clausen, B., Felber, N., Gisin, N., Henzen, L., Junod, P., Litzistorf, G., Monbaron, P., Monat, L.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011)

    Article  Google Scholar 

  31. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., Yoshino, K.: Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19(11), 10387–10409 (2011)

    Article  Google Scholar 

  32. Bechmann-Pasquinucci, H., Gisin, N.: Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys. Rev. Lett. A 59, 4238–4248 (1999)

    Article  MathSciNet  Google Scholar 

  33. Gisin, N., Ribordy, G., Zbinden, H., Stucki, D., Brunner, N., Scarani, V.: Towards practical and fast quantum cryptography. arXiv preprint arXiv:quant-ph/0411022 (2004)

  34. Inoue, K., Waks, E., Yamanoto, Y.: Differential-phase- shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)

    Article  Google Scholar 

  35. Waks, E., Takesue, H., Yamamoto, Y.: Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73, 012344 (2006)

    Article  Google Scholar 

  36. Khan, M.M., et al.: High error-rate quantum key distribution for long distance communication. New J. Phys. 11, 063043 (2009)

    Article  Google Scholar 

  37. Esteban, E., Serna, H.: Quantum key distribution protocol with private-public key. arXiv:0908.2146v4quant-ph, 12 May 2012

  38. Serna, E.H.: Quantum Key Distribution from a random seed. arXiv:1311.1582v2quant-ph, 12 November 2013

  39. Singh, H., Gupta, D.L., Singh, A.K.: Quantum Key Distribution protocols: a review. J. Comput. Inf. Syst. 8, 2839–2849 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lav Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upadhyay, L. (2019). Quantum Cryptography: A Survey. In: Abraham, A., Gandhi, N., Pant, M. (eds) Innovations in Bio-Inspired Computing and Applications. IBICA 2018. Advances in Intelligent Systems and Computing, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-030-16681-6_3

Download citation

Publish with us

Policies and ethics