Skip to main content

A Deep Learning Approach for Molecular Crystallinity Prediction

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 939))

Abstract

With the success of Convolutional Neural Networks (CNN) in computer vision domain, cheminformatics is slowly moving away from feature Engineering towards Network Engineering. New deep networks and approaches are being proposed to explore the chemical behavior and their properties. In this paper, we propose a deep learning approach using Convolutional Neural Network for predicting the crystallization propensity of an organic molecule. The work is inspired from Chemception and architecture is based on the Inception-Resnet v2 model. The proposed approach only requires a 2D molecular drawing to predict if the molecule has a good probability of forming crystals, without the need of any molecular descriptor, any advanced chemistry knowledge or any study of crystal growth mechanisms. We have evaluated our approach on the Cambridge Structural Database (CSD) and the ZINC datasets. Compared with the machine learning approach of generating molecular descriptors plus SVM classification, our proposed approach gives a better classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., Sarma, B., Evans, J.M.B., Myerson, A.S.: Cryst. Growth Des. 11, 887–895 (2011)

    Google Scholar 

  2. Modarressi, H., Dearden, J.C., Modarress, I.: QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors. J. Chem. Inf. Model. 46, 930–936 (2006)

    Article  Google Scholar 

  3. Le, T., Epa, V.C., Burden, F.R., Winkler, D.A.: Chem. Rev. 112, 2889–2919 (2012)

    Article  Google Scholar 

  4. Mitchell, J.B.O.: Machine learning methods in chemoinformatics. WIREs Comput. Mol. Sci. 4, 468–481 (2014)

    Article  Google Scholar 

  5. Bhat, A.U., Merchant, S.S., Bhagwat, S.S.: Prediction of melting points of organic compounds using extreme learning machines. Ind. Eng. Chem. Res. 47, 920–925 (2008)

    Article  Google Scholar 

  6. Palmer, D.S., O’Boyle, N.M., Glen, R.C., Mitchell, J.B.O.: Random forest models to predict aqueous solubility. J. Chem. Inf. Model. 47, 150 (2007)

    Article  Google Scholar 

  7. Varnek, A., Baskin, I.: Machine learning methods for property prediction in chemoinformatics: quo vadis? J. Chem. Inf. Model. 52, 1413–1437 (2012)

    Article  Google Scholar 

  8. Erić, S., Kalinić, M., Popović, A., Zloh, M., Kuzmanovski, I.: Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks. Int. J. Pharm. 437, 232–241 (2012)

    Article  Google Scholar 

  9. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform. 35(1), 3–14 (2016)

    Article  Google Scholar 

  10. Goh, G.B., Hodas, N.O., Vishnu, A.: Deep learning for computational chemistry. J. Comput. Chem. 38(16), 1291–1307 (2017)

    Article  Google Scholar 

  11. Fooshee, D., Mood, A., Gutman, E., Tavakoli, M., Urban, G., Liu, F., Huynh, N., Van Vranken, D., Baldi, P.: Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng. 3, 442–452 (2018)

    Article  Google Scholar 

  12. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3(80) (2015). https://doi.org/10.3389/fenvs.2015.00080

  13. Wicker, J.G.P., Cooper, R.I.: Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 17, 1927–1934 (2015)

    Article  Google Scholar 

  14. Landrum, G.: RDKit: Open-source cheminformatics. http://www.rdkit.org/

  15. Suykens, J.A.K., Vanderwalle, J.: Least squares support vector machines. Neural Process. Lett. 9, 293–300 (1999)

    Article  Google Scholar 

  16. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv:1602.07261 (2016). Inception Resnet v2

  17. Goh, G.B., Siegel, C., Vishnu, A., Hodas, N.O., Baker, N.: Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv preprint arXiv:1706.06689 (2017)

  18. Allen, F.H.: Acta Crystallogr. B 58, 380–388 (2002)

    Google Scholar 

  19. Irwin, J.J., Shoichet, B.K.: J. Chem. Inf. Model. 45, 177–182 (2005)

    Article  Google Scholar 

  20. Weininger, D.: SMILES, a chemical language and information-system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comp. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  21. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: J. Cheminf. 3, 33 (2011)

    Google Scholar 

  22. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS2010, Proceedings of Machine Learning-Research, Chia Laguna Resort, Sardinia, Italy, May 2010, vol. 9, pp. 249–256 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Khungar, B. (2019). A Deep Learning Approach for Molecular Crystallinity Prediction. In: Abraham, A., Gandhi, N., Pant, M. (eds) Innovations in Bio-Inspired Computing and Applications. IBICA 2018. Advances in Intelligent Systems and Computing, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-030-16681-6_22

Download citation

Publish with us

Policies and ethics