Skip to main content

Solution and Fitness Evolution (SAFE): Coevolving Solutions and Their Objective Functions

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11451))

Included in the following conference series:

Abstract

We recently highlighted a fundamental problem recognized to confound algorithmic optimization, namely, conflating the objective with the objective function. Even when the former is well defined, the latter may not be obvious, e.g., in learning a strategy to navigate a maze to find a goal (objective), an effective objective function to evaluate strategies may not be a simple function of the distance to the objective. We proposed to automate the means by which a good objective function may be discovered—a proposal reified herein. We present Solution And Fitness Evolution (SAFE), a commensalistic coevolutionary algorithm that maintains two coevolving populations: a population of candidate solutions and a population of candidate objective functions. As proof of principle of this concept, we show that SAFE successfully evolves not only solutions within a robotic maze domain, but also the objective functions needed to measure solution quality during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sipper, M., Urbanowicz, R.J., Moore, J.H.: To know the objective is not (necessarily) to know the objective function. BioData Min. 11(1), 21 (2018)

    Article  Google Scholar 

  2. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life (ALIFE). MIT Press, Cambridge (2008)

    Google Scholar 

  3. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  4. Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3), 967–976 (1996)

    Article  Google Scholar 

  5. Zaritsky, A., Sipper, M.: Coevolving solutions to the shortest common superstring problem. Biosystems 76(1), 209–216 (2004)

    Article  Google Scholar 

  6. Pena-Reyes, C.A., Sipper, M.: Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 9(5), 727–737 (2001)

    Article  Google Scholar 

  7. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  8. Buche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(2), 183–194 (2005)

    Article  Google Scholar 

  9. Brownlee, A.E.I., Regnier-Coudert, O., McCall, J.A.W., Massie, S.: Using a Markov network as a surrogate fitness function in a genetic algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation. pp. 1–8, July 2010

    Google Scholar 

  10. Schmidt, M.D., Lipson, H.: Coevolution of fitness predictors. IEEE Trans. Evol. Comput. 12(6), 736–749 (2008)

    Article  Google Scholar 

  11. Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: a genetic algorithm approach. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 2031–2038. IEEE (1999)

    Google Scholar 

  12. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  13. Sipper, M.: If the milieu is reasonable: lessons from nature on creating life. J. Transfigural Math. 3(1), 7–22 (1997)

    Google Scholar 

  14. Sipper, M.: Machine Nature: The Coming Age of Bio-Inspired Computing. McGraw-Hill, New York (2002)

    Google Scholar 

  15. Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theory Biosci. 135(3), 131–161 (2016)

    Article  Google Scholar 

  16. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)

    Google Scholar 

  17. Stanley, K.O.: Art in the sciences of the artificial. Leonardo 51(2), 165–172 (2018)

    Article  Google Scholar 

  18. Wikipedia: Symbiosis (2018). https://en.wikipedia.org/wiki/Symbiosis

  19. Darwin, C.R.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)

    Book  Google Scholar 

  20. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  21. Dick, G., Yao, X.: Model representation and cooperative coevolution for finite-state machine evolution. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2700–2707. IEEE, Piscataway (2014)

    Google Scholar 

  22. Hillis, W.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D: Nonlinear Phenomena 42(1), 228–234 (1990)

    Article  Google Scholar 

  23. Cuccu, G., Gomez, F.: When novelty is not enough. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5_24

    Chapter  Google Scholar 

  24. Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary algorithms. BioData Min. 11(2), 1–14 (2018)

    Google Scholar 

  25. Gomez, F.J.: Sustaining diversity using behavioral information distance. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009, pp. 113–120. ACM, New York (2009)

    Google Scholar 

  26. Doncieux, S., Mouret, J.B.: Behavioral diversity with multiple behavioral distances. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1427–1434. IEEE (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (USA) grants AI116794, LM010098, and LM012601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Sipper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sipper, M., Moore, J.H., Urbanowicz, R.J. (2019). Solution and Fitness Evolution (SAFE): Coevolving Solutions and Their Objective Functions. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2019. Lecture Notes in Computer Science(), vol 11451. Springer, Cham. https://doi.org/10.1007/978-3-030-16670-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16670-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16669-4

  • Online ISBN: 978-3-030-16670-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics