Skip to main content

Deep Learning Concepts for Evolutionary Art

  • Conference paper
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11453))

Abstract

A deep convolutional neural network (CNN) trained on millions of images forms a very high-level abstract overview of an image. Our primary goal is to use this high-level content information a given target image to guide the automatic evolution of images using genetic programming. We investigate the use of a pre-trained deep CNN model as a fitness guide for evolution. Two different approaches are considered. Firstly, we developed a heuristic technique called Mean Minimum Matrix Strategy (MMMS) for determining the most suitable high-level CNN nodes to be used for fitness evaluation. This pre-evolution strategy determines the common high-level CNN nodes that show high activation values for a family of images that share an image feature of interest. Using MMMS, experiments show that GP can evolve procedural texture images that likewise have the same high-level feature. Secondly, we use the highest-level fully connected classifier layers of the deep CNN. Here, the user supplies a high-level classification label such as “peacock” or “banana”, and GP tries to evolve an image that maximizes the classification score for that target label. Experiments evolved images that often achieved high confidence scores for the supplied labels. However, the images themselves usually display some key aspect of the target required for CNN classification, rather than the entire subject matter expected by humans. We conclude that deep learning concepts show much potential as a tool for evolutionary art, and future results will improve as deep CNN models are better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://image-net.org/challenges/LSVRC/2012/.

References

  1. Dawkins, R.: The Blind Watchmaker. Norton & Company, Inc. (1986)

    Google Scholar 

  2. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, vol. 25, no. 4, pp. 319–328, July 1991

    Google Scholar 

  3. Rooke, S.: Eons of genetically evolved algorithmic images. In: Bentley, P., Corne, D. (eds.) Creative Evolutionary Systems, pp. 339–365. Morgan Kaufmann, San Francisco (2002)

    Chapter  Google Scholar 

  4. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)

    MATH  Google Scholar 

  5. Bentley, P.: Creative Evolutionary Systems. Morgan Kaufmann, San Francisco (2002)

    Book  Google Scholar 

  6. Romero, J., Machado, P.: The Art of Artificial Evolution. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72877-1

    Book  Google Scholar 

  7. Graf, J., Banzhaf, W.: Interactive evolution of images. In: Proceedings 4th Evolutionary Programming, pp. 53–65. MIT Press (1995)

    Google Scholar 

  8. den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_32

    Chapter  Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  10. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Proceedings 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  12. Gatys, L., Ecker, A., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings Computer Vision and Pattern Recognition, pp. 2414–2423. IEEE, June 2016

    Google Scholar 

  13. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings Computer Vision and Pattern Recognition, pp. 886–893. IEEE (2005)

    Google Scholar 

  15. Bay, H., Tuytelaars, T., Van Gool, L.: Speeded up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  16. Tanjil, F.: Deep learning concepts for evolutionary art. Master’s thesis, Department Computer Science, Brock U. (2018)

    Google Scholar 

  17. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming. Lulu Enterprises UK Ltd. (2008)

    Google Scholar 

  19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  20. Gooch, B., Gooch, A.: Non-photorealistic Rendering. A. K. Peters (2001)

    Google Scholar 

  21. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 427–436, June 2015

    Google Scholar 

  22. Bontrager, P., Lin, W., Togelius, J., Risi, S.: Deep interactive evolution. In: Liapis, A., Romero Cardalda, J.J., Ekárt, A. (eds.) EvoMUSART 2018. LNCS, vol. 10783, pp. 267–282. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77583-8_18

    Chapter  Google Scholar 

  23. Stanley, K.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  24. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connection Sci. 6(2–3), 325–354 (1994)

    Article  Google Scholar 

  25. Agapitos, A., et al.: Deep evolution of image representations for handwritten digit recognition. In: Proceedings CEC 2015, Sendai, Japan, 25–28 May 2015, pp. 2452–2459. IEEE (2015)

    Google Scholar 

  26. Gircys, M.: Image evolution using 2D power spectra. Master’s thesis, Brock University, Department of Computer Science (2018)

    Google Scholar 

  27. Luke, S.: ECJ: a Java-based evolutionary computation research system. https://cs.gmu.edu/~eclab/projects/ecj/. Accessed 16 Sept 2017

  28. Chintala, S.: Pytorch documentation. http://pytorch.org/docs/master/. Accessed 16 Sept 2017

  29. Chintala, S.: PyTorch: tensors and dynamic neural networks in python with strong GPU acceleration. http://pytorch.org/. Accessed 16 Sept 2017

Download references

Acknowledgements

This research was supported by NSERC Discovery Grant RGPIN-2016-03653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Tanjil, F., Ross, B.J. (2019). Deep Learning Concepts for Evolutionary Art. In: Ekárt, A., Liapis, A., Castro Pena, M.L. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2019. Lecture Notes in Computer Science(), vol 11453. Springer, Cham. https://doi.org/10.1007/978-3-030-16667-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16667-0_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16666-3

  • Online ISBN: 978-3-030-16667-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics