Skip to main content

Category Theory and Quantum Mechanics

  • Chapter
  • First Online:
Book cover The Quantum Mechanics Conundrum
  • 1182 Accesses

Abstract

In the present chapter, we shall deal with the general logical–epistemological foundations of the quantum theory, where the stress is on categorisation. This aspect and the physical–ontological ones previously discussed need finally to agree. I first give a general account of category theory. Then, we shall see its applications to QM and especially to quantum information. Then a logical and epistemological assessment of the theory follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Abramsky and Tzevelekos (2011).

  2. 2.

    An insight that was already of Aristotle but forgotten by many: see Aristotle Cat. (2019c).  See also Auletta (2013d).

  3. 3.

    See Chaitin (1998, Sect. 1.1).

  4. 4.

    Frege (1884), Frege (1893), Hilbert (1903).

  5. 5.

    Suppes (1960).  Newton da Costa and the Chilean logician Rolando Chuaqi split this requirement into two distinct sets of axioms (Chaitin et al. 2011, pp. 68–69).

  6. 6.

    Leinster (2014, pp. 71–73).

  7. 7.

    Zermelo (1908), Zermelo (1930), Fraenkel et al. (1958) .

  8. 8.

    Leinster (2014, pp. 79–80).

  9. 9.

    For the subject of the present section, I shall mainly rely on two recent textbooks: (Spivak 2013; Leinster 2014)  The former is more approachable by non-mathematicians (since it also shows some applications), the latter is more abstract and formal.

  10. 10.

    I have previously used the symbol \(\longmapsto \) for some mappings between physical systems. In this sense, I have treated them as individual systems, what is in general correct. There is some ambiguity when we deal with information, since in that case we abstract from the particular physical characters of the system. Nevertheless, also in this case, we often deal with a qubit in a well definite state.

  11. 11.

    Spivak (2013, Chap. 3 and Sects. 4.1, 4.2).

  12. 12.

    Geroch (1985, pp. 18–19).

  13. 13.

    The error was found by Russell and deals with the fact that both the definitions of “the set of the sets that are not members of themselves” and of “the set of the sets that are members of themselves” (and similar sets) lead to a contradiction that cannot be resolved within the system that defines the set itself (Russell 1902, 1903) .

  14. 14.

    Leinster (2014, Chap. 5).

  15. 15.

    Spivak (2013, Sect. 5.1).

  16. 16.

    Leinster (2014, Chap. 4).

  17. 17.

    Spivak (2013, Sect. 4.3).

  18. 18.

    Baez and Stay (2011).

  19. 19.

    For what follows see Abramsky and Coecke (2009) .

  20. 20.

    For what follows see Abramsky and Coecke (2009) .

  21. 21.

    I make here a simplification avoiding the complexities arising from compact closed categories.

  22. 22.

    Auletta (2013b).

  23. 23.

    Boole (1854).

  24. 24.

    Auletta (2013c).

  25. 25.

    For a canonical introduction to Boolean algebra see Givant and Halmos (2009).

  26. 26.

    See Boole (1854, p. 33).

  27. 27.

    Spivak (2013, Sect. 3.4).

  28. 28.

    Auletta (2013b, Chap. 1).

  29. 29.

    Auletta (2013b, Chap. 8).

  30. 30.

    Givant and Halmos (2009, p. 45).

  31. 31.

    Auletta (2013b, 2015c).

  32. 32.

    Leibniz (1666).

  33. 33.

    Givant and Halmos (2009, pp. 117 and 127).

  34. 34.

    Givant and Halmos (2009, Chap. 4).

  35. 35.

    Poincaré (1902, p. 49).

  36. 36.

    Poincaré tells us that formal logic is nothing else than the study of the properties that are common to any classification (Poincaré 1909, p. 9).

  37. 37.

    See Givant and Halmos (2009, pp. 149–150).

  38. 38.

    Presented for the first time in Auletta (2015c).

  39. 39.

    For the notion of vector space see Byron and Fuller (1969, I, Sect. 3.1).

  40. 40.

    Byron and Fuller (1969, I, Sect. 3.2).

  41. 41.

    Byron and Fuller (1969, I, Sect. 3.3).

  42. 42.

    Auletta (2015c).

  43. 43.

    Gödel (1931) .

  44. 44.

    Carnap tells us that a class does not consist only of its members (Carnap 1928, Sect. 37).

  45. 45.

    Peirce (1898, p. 247).

  46. 46.

    See e.g. Peirce (1898, pp. 162–163).

  47. 47.

    Wheeler (1983), Wheeler (1990).  See also Auletta (2000, Sect. 33.1.2).

  48. 48.

    Chellas (1980).

  49. 49.

    Armstrong (1983, p. 82 and ff).

  50. 50.

    Wheeler (1988).  See also Laughlin (2005).

  51. 51.

    http://www.aip.org/history/ohilist/4958.html.

  52. 52.

    Peirce (1884, pp. 553–554),  Peirce (1891, p. 106). See also Auletta (2011a, Chap. 3). Peirce’s view has been also supported in Smolin (2013) , although the main thesis there is quite different from that supported here as far as the author rejects conservation laws and symmetries, which are, at the opposite, central to my approach. I remark that in the Introduction, Smolin quotes interesting statements of Dirac that also support the evolution of laws.

  53. 53.

    Peirce (1887, p. 208).

  54. 54.

    The late Peirce acknowledged this point to a certain extent (Peirce 1898, pp. 210–211).  On such a problem see Auletta (2016d).

  55. 55.

    It seems that what follows is not far away from the spirit of Epperson and Zafiris (2013).  Anyway, they are among the few scholars to take Boolean algebra as fundamental for QM.

  56. 56.

    See Beltrametti and Cassinelli (1981, Chap. 12),   In fact, one finds this statement still today (Coecke and Paquette 2011, pp. 246–247).

  57. 57.

    Birkhoff and Von Neumann (1936).  See also Landsman (2017, Sect. 2.10).

  58. 58.

    As well understood by Ludwig

  59. 59.

    See also Busch et al. (1995, pp. 25–26).

  60. 60.

    Eddington (1939, p. 5)  He further noted that physics is more and more based on epistemological principles as well as mathematics on logical ones. He seems however to forget this when he repeatedly affirms (for instance Eddington 1939, p. 89) that in relativity we observe relations and in QM we observe probabilities. See also Eddington (1939, pp. 87–88) .

  61. 61.

    Auletta (2011a, Chap. 8).

  62. 62.

    On this point see Auletta (2016a).

  63. 63.

    Still et al. (2012)  Sengupta et al. (2013).

  64. 64.

    Auletta (2013a).

  65. 65.

    Uhlen and Ponten (2005).

  66. 66.

    Alberts et al. (1983, Chaps. 2, 7) .

  67. 67.

    Barbieri (2003, 2015).

  68. 68.

    Auletta (2016b).

  69. 69.

    Conant and Ashby (1970).

  70. 70.

    Auletta and Jeannerod (2013).

  71. 71.

    Auletta et al. (2008),  Auletta (2012).

  72. 72.

    Auletta (2011c, 2013a) and literature quoted there.

  73. 73.

    Alberts et al. (1983, Chaps. 13–15),  Barbieri (2015, p. 43),  Auletta (2011a, Sect. 7.6.2).

  74. 74.

    Gilbert (2006)  West-Eberhard (2003).  See also Auletta (2011a, Sect. 11.2).

  75. 75.

    Auletta (2013a).

  76. 76.

    A first, still immature, analysis in Auletta (2008a).

  77. 77.

    Friston (2012, 2013), Friston et al. (2014).

  78. 78.

    von Helmholtz (1883, pp. 663–679, 881–885).  See also Ledoux (2002, p. 44).

  79. 79.

    Deacon (1997), Lemke (2000).

  80. 80.

    Although bacteria do not possess a brain, molecular information processing performs not badly (Adleman 1994, 1998; Bourret/Stock 2002) .

  81. 81.

    Berg and Brown (1972), Jurica and Stoddard (1998), Shimizu et al. (2010).  See also Auletta (2011c).

  82. 82.

    Peirce CP (2019, 2.228, 2.247–48, 2.304, 1.540), Peirce (1907).

  83. 83.

    As pointed out in Peirce (1903a, p. 167).  Note that here and in the following, I use the term invalidating feedback  for denoting a signal that contradicts the expectations or indicates that things do not proceed in the right way. Sometimes scholars, included myself, lacking a generally acknowledged term, use negative feedback to this purpose, although the latter term has a different technical use.

  84. 84.

    See Schrödinger (1958, Chap. 2).

  85. 85.

    See Auletta et al. (2013).

  86. 86.

    Also Deutsch seems to agree on the relevance of control (Deutsch 2011, Chap. 3).

  87. 87.

    Mach (1905).

  88. 88.

    See Nielsen and Chuang (2000, p. 249).

  89. 89.

    On this point see Auletta (2011a, Sect. 4.1) and references therein.

  90. 90.

    Merleau-Ponty (1942, 1945),  Schrödinger (1958, Chap. 3), Clark (1997).

  91. 91.

    Mink et al. (1981),  Raichle and Gusnard (2002).

  92. 92.

    Stout and Chaminade (2012).  See also Auletta (2015b).

  93. 93.

    Auletta (2015a).

  94. 94.

    Crile (1941, p. 211).

  95. 95.

    “Les vérités ne sont fécondes que si elles sont enchaînées les unes aux autres” (Poincaré 1897b).

  96. 96.

    Friston (2005), Friston et al. (2006), Friston and Stephan (2007),  Friston and Kiebel (2009).

  97. 97.

    Deacon (1997),  Auletta (2016c).

  98. 98.

    Marshall-Pescini and Whiten (2008).

  99. 99.

    Rizzolatti et al. (1990), Fogassi et al. (2005).

  100. 100.

    Cosmides and Tooby (2000), Cosmides and Tooby (2002).  See also Auletta (2015b).

  101. 101.

    Gibson (1979).

  102. 102.

    Hauser (1996).

  103. 103.

    Auletta (2011a, 3rd part).

  104. 104.

    Chomsky (2000),  Hauser (2009).

  105. 105.

    Auletta (2011a, Chap. 19).

  106. 106.

    Peirce (1866, pp. 405–406).

  107. 107.

    von Helmholtz (1867, pp. 586–593, 601–602).  See also Kandel (2006, p. 302),  Auletta (2011a, Sect. 12.2). Peirce dared to say that Nature also makes inductions and retroductions (abductions) (Peirce 1898, p. 161).

  108. 108.

    Peirce (1868b, p. 214),  Here, not by chance, he says that perceptions represent premises for our further reasoning. It is also true that he did acknowledge that to perceive represents also a kind of discontinuity (Peirce 1903b, p. 191–94),   in accordance with our interpretation of information selection. See also Margenau (1950, Sect. 4.1).

  109. 109.

    Peirce (1865, pp. 259–261), Peirce (1866, pp. 365–369).

  110. 110.

    Peirce (1865, p. 259), Peirce (1866, pp. 362–363).

  111. 111.

    Aristotle An. post. (2019a, 75a38-75b2 and 76b13-16).

  112. 112.

    Auletta (2013d).

  113. 113.

    Peirce (1868a, pp. 72–74).  See also Auletta (2013d).

  114. 114.

    Peirce (1865, pp. 187–189 and 284–286).

  115. 115.

    Peirce (1868a, p. 83)

  116. 116.

    Peirce (1878)

  117. 117.

    See Margenau (1950, Sect. 5.6).

  118. 118.

    Auletta (2009).

  119. 119.

    Einstein (1934, pp. 164–165).

  120. 120.

    Peirce (1865, p. 179).

  121. 121.

    Peirce (1865, pp. 187–189 and 284–286).

  122. 122.

    Peirce (1865, p. 292).

  123. 123.

    Peirce (1866, pp. 458–471).

  124. 124.

    Peirce (1866, p. 452).

  125. 125.

    Auletta (2017).

  126. 126.

    Deduction (8.139) has the form of a Aristotle’s 1st–figure syllogism, in particular of (what in the Middle–Ages was baptised) Barbara (Aristotle An. pr. 2019b) See also Auletta (2013d).

  127. 127.

    The following inference has the form of a Aristotle’s 2nd–figure syllogism, in particular of (what in the Middle-Ages was baptised) Baroco (Aristotle An. pr. 2019b).  For people interested to these issues, see again Auletta (2013d).

  128. 128.

    Poincaré (1905, p. 32). Poincaré spoke also of a “creative virtue”, distinct from logic, even in mathematics (Poincaré 1902, p. 32).

  129. 129.

    Hume (1739, Book I, Sect. 6), Hume (1748, Sect. 4, Part I).

  130. 130.

    Hume (1739, Book I, Sect. 4), Hume (1748, Sects. 3 and 5, Part II) ; see also Auletta (2011a, Sects. 20.5, 20.6).

  131. 131.

    Kuhn (1962).

  132. 132.

    Auletta (2017).

  133. 133.

    The following inference has the form of a Aristotle’s 3rd–figure syllogism, in particular of (what in the Middle-Ages was baptised) Bocardo (Aristotle An. pr. 2019b).  See also Auletta (2013d).

  134. 134.

    Auletta (2011a, Sect. 18.4.4), Dehaene (2014, pp. 117–118).

  135. 135.

    This is the main thesis of Auletta (2011a).

  136. 136.

    Poincaré (1897a).

  137. 137.

    Poincaré (1902, p. 157). Although the great scientist seems to consider experience in positive terms according to the traditional (and erroneous) inductive explanation of knowledge (Poincaré 1902, p. 158).

  138. 138.

    Popper (1934, pp. 16–17).  See also Deutsch (1997, p. 62).  At the opposite, C. Peirce, although having much more clarity about the logical and inferential background of science, showed still some incertitude about the non-positive (non-instructive) character of experience. On the issue of induction in Peirce see also Shimony (1970, pp. 231–235).

  139. 139.

    Margenau (1950, Sect. 5.1).  See also Friedman (1983, Sect. 7.1).

  140. 140.

    Auletta (2013b).

  141. 141.

    Auletta (2017).

  142. 142.

    Peirce (1901, pp. 96–97).  See also Peirce (1893, p. 196).

  143. 143.

    Auletta (2011a, Sect. 6.1, Chap. 12), Auletta (2011b, Sect. 2.2). See also Deutsch (2011, Chap. 12).

  144. 144.

    Jaynes (1967),  Kuhn (1957, 1962).

  145. 145.

    To a certain extent, this stage corresponds to the so-called auxiliary hypothesis that does not change the core of the theory, as proposed in Lakatos (1976).

  146. 146.

    Poincaré (1902, Chap. 10).

  147. 147.

    Poincaré (1902, p. 151), Poincaré (1905, Chap. 10).

  148. 148.

    Auletta (2011b, Sect. 5.4).

  149. 149.

    Einstein (1936, p. 96).

  150. 150.

    A first hint in Peirce (1898, p. 198).

  151. 151.

    D’Ariano et al. (2017, Sects. 3.1, 3.2 and 4.2).

  152. 152.

    As analysed in Ludwig (1978, pp. 8–9).

  153. 153.

    Auletta and Torcal (2011).

  154. 154.

    D’Ariano et al. (2017, Sect. 6.1).

  155. 155.

    D’Ariano et al. (2017, Chap. 5) .

  156. 156.

    I quote here Bell (1981).

  157. 157.

    Only in this specific sense I could agree with the dictum recalled in the Introduction, when the Nobel Prize winner Feynman says that QM cannot be explained or understood (Feynman et al. 1965, III, 1–1).  Otherwise it would imply a renouncement to scientific research.

  158. 158.

    This is the so-called problem of the translation among different representations as pointed out in Quine (1960, Sect. 12), Quine (1969).

  159. 159.

    As stressed in Auletta (2011a, Chap. 12), where further references can also be found.

  160. 160.

    The philosophy of the postmodern world dominated by simulacra has been introduced in Baudrillard (1981).

  161. 161.

    Hume (1739, p. 253).

  162. 162.

    As pointed out in Auletta (2011a, Sect. 6.1).

  163. 163.

    This has been the basic insight of Auletta (2011a).

  164. 164.

    Peirce (1903b, 1907), Peirce CP (2019, 2.228, 2.247–8, 2.304), Peirce (1903c, 1.540).  On this subject see also Auletta (2011a, Chaps. 8 and 19). Auletta, Gennaro.

  165. 165.

    This is the essence of motor cognition (Jeannerod 1988, 2006, 2009).

  166. 166.

    Examination and literature in Auletta (2011a, Chaps. 4 and 13).

  167. 167.

    It is not by chance that Poincaré said that organisms immobile (like plants) could not build a geometry, because they do not move and act in the space (Poincaré 1905, pp. 68–69).

  168. 168.

    von Helmholtz (1867, pp. 586–589), Herbart (1824, Sect. 3).

  169. 169.

    Wheeler (1988).

References

  • Abramsky, S., and N. Tzevelekos. 2011. Introduction to Categories and Categorial logic. In [Coecke 2011, 3–94].

    Chapter  Google Scholar 

  • Abramsly, S., and B. Coecke. 2009. Categorial Quantum Mechanics. http://www.indiana.edu/~iulg/qliqc/HQL_fin.pdf

  • Adleman, Leonard M. 1994. Molecular Computation of Solutions to Combinatorial Problems. Science 266: 1021–1024. https://doi.org/10.1126/science.7973651.

    Article  ADS  Google Scholar 

  • Adleman, Leonard M. 1998. Computing with DNA. Scientific American 279 (2): 54–61.

    Article  Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. 1983. The Molecular Biology of the Cell. New York: Garland P; 2nd ed. 1989; 3rd ed. 1994; Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., 4th ed. 2002; 5th ed. 2008.

    Google Scholar 

  • Aristotle. 1831. Opera, ed. Immanuel Bekker. Berlin: G. Reimerum.

    Google Scholar 

  • Aristotle. 1949. Categorae, in [Aristotle Cat-Int.]; also in [Aristotle Op., 1–15].

    Google Scholar 

  • Aristotle. 1964. Analytica Priora et Posteriora, ed. W.D. Ross and L. Minio-Paluello. Oxford.

    Google Scholar 

  • Aristotle. 2019a. Analytica Posteriora. In [Aristotle AnPr–Po.]; also in [Aristotle Op., 71–100].

    Google Scholar 

  • Aristotle. 2019b. Analytica priora, in [Aristotle AnPr–Po.]; also in [Aristotle Op., 24–70].

    Google Scholar 

  • Aristotle. 2019c. Categoriæ. In [Aristotle Cat-Int.]; also in [Aristotle Op., 1–15].

    Google Scholar 

  • Armstrong, David M. 1983. What is a Law Of Nature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Auletta, Gennaro. 2000. Foundations and Interpretation of Quantum Mechanics. In The Light of a Critical-historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific; rev. ed. 2001.

    Google Scholar 

  • Auletta, Gennaro. 2008a. Autarchy and Openness in Living Systems. In [Auletta 2008b, 17–25].

    Google Scholar 

  • Auletta, Gennaro. (ed.). 2008b. The Controversial Relations Between Science and Philosophy: New trtunities for a Fruitful Dialogue. Libreria Editrice Vaticana: Vatican City.

    Google Scholar 

  • Auletta, Gennaro. 2009. What About the Three Forms of Inference? Acta Philosophica 18 (1): 59–74.

    Google Scholar 

  • Auletta, Gennaro. 2011a. Cognitive Biology: Dealing with Information From Bacteria to Minds. Oxford: University Press.

    Google Scholar 

  • Auletta, Gennaro. 2011b. (in collaboration with I. Colagè, P. D’ambrosio, and L. Torcal), Integrated Cognitive Strategies in a Changing World. Rome: G and B Press.

    Google Scholar 

  • Auletta, Gennaro. 2011c. Teleonomy: The Feedback Circuit Involving Information and Thermodynamic Processes. Journal of Modern Physics 2 (3): 136–145. https://doi.org/10.4236/jmp.2011.23021. http://www.scirp.org/journal/PaperInformation.aspx?paperID=4488.

    Article  ADS  Google Scholar 

  • Auletta, Gennaro. 2012. Causation Upside Down? Revista Portuguesa de Filosofia 68 (1-2): 9–32.

    Article  Google Scholar 

  • Auletta, Gennaro. 2013a. Information and Metabolism in Bacterial Chemotaxis. Entropy 15: 311–326. https://doi.org/10.3390/e15010311. http://www.mdpi.com/1099-4300/15/1/311.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, Gennaro. 2013b. Mechanical Logic in Three-Dimensional Space. Singapore: Pan Stanford Pub.

    MATH  Google Scholar 

  • Auletta, Gennaro. 2013c. A New Way to Implement Quantum Computation. Journal of Quantum Information Science 3 (4): 127–137. https://doi.org/10.4236/jqis.2013.34017.

    Article  MathSciNet  Google Scholar 

  • Auletta, Gennaro. 2013d. Aristotle’s Syllogistic Revisited. Epistemologia 36: 233–261.

    MATH  Google Scholar 

  • Auletta, Gennaro. 2015a. Emergence: Selection, Allowed Operations, and Conserved Quantities. South-African Journal of Philosophy 34: 93–105. https://doi.org/10.1080/02580136.2014.992156.

    Article  Google Scholar 

  • Auletta, Gennaro. 2015b. Les premiers humains modernes. Rapprochemententre la génétique, l’épigénétique et lessciences humaines. Le tornant cognitif–culturel qui a rendu lessystémes symboliques possibles. In Sur le chemin de l’humanité, ed. Henry de Lumley, 387–439. Paris, Pontifical Academyof Sciences and CNRS Ed.; Discussion: 440–444.

    Google Scholar 

  • Auletta, Gennaro. 2015c. Irreducible Statements and Bases for Finite–Dimensional Logical Spaces. Indian Ocean Review of Science and Technology 2015, Article 2.

    Google Scholar 

  • Auletta, Gennaro. 2016a. Networks and Causation Top-Down. Revista Portuguesa de Filosofia 72: 171–180. https://doi.org/10.17990/RPF/2016-72-1-0171.

  • Auletta, Gennaro. 2016b. From Peirce’s Semiotics to Information-Sign-Symbol. Biosemiotics 2016: 1–16. https://doi.org/10.1007/s12304-016-9275-2.

    Article  Google Scholar 

  • Auletta, Gennaro. 2016c. Connection Between Scripts Embedding Motor Schemes and Decision Making. In Processes of Believing: The Acquisition, Maintenance, and Change in Creditions, ed. H.-F. Angel, L. Oviedo, and R. Seitz. Berlin: Springer.

    Google Scholar 

  • Auletta, Gennaro. 2016d. Critical Examination of Peirce’s Theory of Categories. SCIO: Journal of Philosophy 12: 23–49.

    Google Scholar 

  • Auletta, Gennaro. 2017. A Critical Examination of Peirce’s Theory of Natural Inferences. Revista Portuguesa de Filosofia 73 (3–4): 1053–1094. https://doi.org/10.17990/RPF/2017-73-3-1053.

  • Auletta. G., and M. Jeannerod. 2013. Introduction: Consciousness as a Top-Down Causal Agency. In [Auletta et al. 2013, 1–49].

    Chapter  Google Scholar 

  • Auletta, G., and L. Torcal. 2011. From Wave-Particle to Features-Event Complementarity. International Journal of Theoretical Physics 50: 3654–3668. https://doi.org/10.1007/s10773-011-0833-8.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, G., G. Ellis, and L. Jaeger. 2008. Top-Down Causation by Information Control: From a Philosophical Problem to a Scientific Research Program. Journal of the Royal Society: Interface 5: 1159–1172. https://doi.org/10.1098/rsif.2008.0018.

    Article  Google Scholar 

  • Auletta, G., I. Colagè, and P. D’Ambrosio. 2013. The Game of Life Implies Both Teleonomy and Teleology. In [Auletta/Pons 2013, 267–284].

    Google Scholar 

  • Baez, J., and M. Stay. 2011. Physics, Topology, Logic and Computation: A Rosetta Stone. In [Coecke 2011, 95–172].

    Chapter  Google Scholar 

  • Barbieri, Marcello. 2003. The Organic Codes: An Introduction to Semantic Biology. Cambridge: University Press.

    Google Scholar 

  • Barbieri, Marcello. 2015. Code Biology: A New Science of Life. Berlin: Springer.

    Book  Google Scholar 

  • Baudrillard, Jean. 1981. Simulacres et simulation. Paris.

    Google Scholar 

  • Bell, John S. 1981. Quantum Mechanics for Cosmologists. In Quantum Gravity 2, ed. C.J. Isham, R. Penrose, and D. Sciama. Clarendon, Oxford; rep. in [Bell 1987, 117–138].

    Google Scholar 

  • Bekenstein, Jacob D. 1987. Speakable and Unspeakable in Quantum Mechanics. Cambridge: University Press.

    Google Scholar 

  • Beltrametti, E., and G. Cassinelli. 1981. The Logic of Quantum Mechanics. Redwood City: Addison-Wesley.

    MATH  Google Scholar 

  • Berg, H.C., and D.A. Brown. 1972. Chemotaxis in Escherichia Coli Analysed by Three-dimensional Tracking. Nature 239: 500–504.

    Article  ADS  Google Scholar 

  • Birkhoff, G.D., and J. von Neumann. 1936. The Logic of Quantum Mechanics. Annals of Mathematics 37: 823–43; rep. In [Hooker 1975, 1–26].

    Google Scholar 

  • Boole, George. 1854. An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities. London: Walton and Maberly. New York: Dover.

    Google Scholar 

  • Bourret, R.B., and A.M. Stock. 2002. Molecular Information Processing: Lessons From Bacterial Chemotaxis. The Journal of Biological Chemistry 277: 9625–9628.

    Article  Google Scholar 

  • Busch, P., M. Grabowski, and P.J. Lahti. 1995. Operational Quantum Physics. Berlin: Springer.

    Book  Google Scholar 

  • Byron Jr., F.W., and R.W. Fuller. 1969. Mathematics of Classical and Quantum Physics. New York: Dover.

    Google Scholar 

  • Carnap, Rudolf. 1928. Der logische Aufbau der Welt. Meiner: Hamburg.

    Google Scholar 

  • Chaitin, Gregory J. 1998. The Limits of Mathematics: A Course on Information Theory and Limits of Formal Reasoning, 2nd ed. Singapore: Springer.

    MATH  Google Scholar 

  • Chaitin, G.J., N. da Costa, and F.A. Doria. 2011. Gödel’s Way: Exploits into an Undecidable World. Milton Park: Taylor and Francis.

    MATH  Google Scholar 

  • Chellas, Brian F. 1980. Modal Logic. An Introduction. Cambridge: University Press.

    Google Scholar 

  • Chomsky, Noam. 2000. New Horizons in the Study of Language and Mind. Cambridge: University Press.

    Book  Google Scholar 

  • Clark, Andy, and Being There. 1997. Putting Brain, Body, and World Together Again. Cambridge, MA: MIT Press.

    Google Scholar 

  • Coecke, Bob (ed.). 2011. New Structures for Physics. Berlin: Springer.

    MATH  Google Scholar 

  • Coecke, B., and É.O. Paquette. 2011. Categories for the Practising Physicist. In [Coecke 2011, 173–286].

    Chapter  Google Scholar 

  • Conant, R.C., and R.W. Ashby. 1970. Every Good Regulator of a System Must Be a Model of That System. International Journal of Systems Science 1: 89–97.

    Article  MathSciNet  Google Scholar 

  • Cosmides, L., and J. Tooby. 2000. Consider the Source: The Evolution of Adaptations for Decoupling and Metarepresentation. In [Sperber 2000, 53–115].

    Google Scholar 

  • Cosmides, L., and J. Tooby. 2002. Unraveling the Enigma of Human Intelligence: Evolutionary Psychology and the Multimodular Mind. In [Sternberg and Kaufman 2002, 145–198].

    Google Scholar 

  • Crile, George. 1941. Intelligence, Power and Personality. New York: McGraw-Hill.

    Google Scholar 

  • D’Ariano, M., G. Chiribella, and P. Perinotti. 2017. Quantum Theory From First Principles: An Informational Approach. Cambridge: University Press.

    Google Scholar 

  • Deacon, Terrence W. 1997. The Symbolic Species: The Co-evolution of Language and the Brain. New York: W. W. Norton.

    Google Scholar 

  • Dehaene, Stanislas. 2014. Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. New York: Viking.

    Google Scholar 

  • Deutsch, David. 1997. The Fabric of Reality: The Science of Parallel Universes and Its Implications. London: Penguin Books.

    Google Scholar 

  • Deutsch, David. 2011. The Beginning of Infinity: Explanations that Transform the World. London: Penguin Books.

    MATH  Google Scholar 

  • Eddington. 1939. Philosophy of Physical Science. Cambridge: University Press.

    Google Scholar 

  • Einstein, Albert. 1930. Zur Methodik der Theoretischen Physik, rep. in [Einstein 1993, 113–119].

    Google Scholar 

  • Einstein, Albert. 1934. On the Method of Theoretical Physics. Philosophy of Science 1: 163–169; eng. tr. of [Einstein 1930].

    Article  Google Scholar 

  • Einstein, Albert. 1936. Physik und Realität. Journal of Franklin Institute 221: 349–382; eng. tr. in [Einstein 1956, 59–97].

    Article  Google Scholar 

  • Einstein, Albert. 1956. Out of My Later Years, Estate of A. Einstein: New York: Wings Books.

    Google Scholar 

  • Epperson, M., and E. Zafiris. 2013. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature. Lexington Books.

    Google Scholar 

  • Feynman, R., R.B. Leighton, and M. Sands. 1965. Lectures on Physics. Reading (Massachusetts): Addison-Wesley, I v.: 1963, 1977; II v.: 1964, 1977; III v.: 1965, 1966.

    Google Scholar 

  • Fogassi, L., P.F. Ferrari, B. Gesierich, S., Rozzi, F., Chersi., and G. Rizzolatti. 2005. Parietal Lobe: From Action Organization to Intention Understanding Science 308: 662–667.

    Article  ADS  Google Scholar 

  • Fraenkel, A., Y. Bar-Hillel, and A. Levy. 1958. Foundations of Set Theory. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Frege, Gottlob. 1884. Die Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über den Begriff der Zahl, Breslau, w. Koebner, 1884.

    Google Scholar 

  • Frege, Gottlob. 1893. Grundgesetze der Arithmetik, Jena, H. Pohle; I v.; II v.: 1903; reprint: Hildesheim, Olms, 1998.

    Google Scholar 

  • Friedman, Michael. 1983. Foundations of Space–time Theories. Relativistic Physics and Philosophy of Science. Princeton: University Press.

    Google Scholar 

  • Friston, Karl J. 2005. A Theory of Cortical Responses. Philosophical Transactions of the Royal Society, London B 360: 815–836.

    Article  Google Scholar 

  • Friston, Karl J. 2012. A Free Energy Principle for Biological Systems. Entropy 14: 2100–2121.

    Article  MathSciNet  Google Scholar 

  • Friston, Karl J. 2013. Life as We Know It. Journal of the Royal Society Interface 10: 20130475. https://doi.org/10.1098/rsif.2013.0475.

    Article  Google Scholar 

  • Friston, K.J., and S. Kiebel. 2009. Predictive Coding Under the Free-energy Principle. Philosophical Transactions of the Royal Society B364: 1211–1221.

    Article  Google Scholar 

  • Friston, K.J., and K.E. Stephan. 2007. Free-Energy and the Brain. Synthese 159: 417–458.

    Article  Google Scholar 

  • Friston, K.J., J. Kilner, and L. Harrison. 2006. A Free Energy Principle for the Brain. Journal of Physiology (Paris) 100: 70–87.

    Article  Google Scholar 

  • Friston, K.J., B. Sengupta, and G. Auletta. 2014. Cognitive Dynamics: From Attractors to Active Inference. Proceedings of the IEEE 102: 427–445. https://doi.org/10.1109/JPROC.2014.2306251.

    Article  Google Scholar 

  • Geroch, Robert. 1985. Mathematical Physics. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Gibson, James J. 1979. The Ecological Approach to Visual Perception. Boston: Houghton Mifflin, 1979; Hillsdale. NJ: L. Erlbaum Ass, 1986.

    Google Scholar 

  • Gilbert, Scott F. 2006. Developmental Biology, 8th ed. Sunderland, MA: Sinauer.

    Google Scholar 

  • Givant, S., and P. Halmos. 2009. Introduction to Boolean Algebras. Berlin: Springer.

    MATH  Google Scholar 

  • Gödel, Kurt. 1931. Über formal unentscheidbar Sätze der. Principia Mathematica und verwandter Systeme. I, Monatshefte für Mathematik und Physik 38: 173–198.

    Article  Google Scholar 

  • Hauser, Marc D. 1996. The Evolution of Communication. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hauser, Marc D. 2009. The Possibility of Impossible Cultures. Nature 460: 190–196.

    Article  ADS  Google Scholar 

  • Herbart, Johannes F. 1824. Psychologie als Wissenschaft; rep. in [Herbart 1850, v. 5, 1–189].

    Google Scholar 

  • Hilbert, David. 1903. Grundlagen der Geometrie. Leipzig: Teubner.

    MATH  Google Scholar 

  • Hooker, Cliff A. (ed.). 1975. The Logico-Algebraic Approach to Quantum Mechanics. Reidel: Historical Evolution. Dordrecht.

    MATH  Google Scholar 

  • Hume, David. 1739. A Treatise of Human Nature. London, Oxford: University Press.

    Google Scholar 

  • Hume, David. 1748. Enquiry Concerning Human Understanding; 3rd ed. 1754; London.

    Google Scholar 

  • Jaynes, Edwin T. 1967. Foundations of Probability Theory and Statistical Mechanics. In The Delaware Seminar in the Foundations of Physics, ed. M. Bunge, 77–101. New York: Springer.

    Chapter  Google Scholar 

  • Jeannerod, Marc. 1988. The Neuronal and Behavioral Organization of Goal-directed Movements. Oxford: University Press.

    Google Scholar 

  • Jeannerod, Marc. 2006. Motor Cognition: What Actions Tell the Self. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Jeannerod, Marc. 2009. Le cerveau volontaire. Paris: O. Jacob.

    Google Scholar 

  • Jurica, M.S., and B.L. Stoddard. 1998. Mind your B’s and R’s: Bacterial Chemotaxis, Signal Transduction and Protein Recognition. Structure 6: 809–813.

    Article  Google Scholar 

  • Kandel, Eric R. 2006. In Search of Memory: The Emergence of a New Science of Mind. New York: W. W. Norton.

    Google Scholar 

  • Kuhn, Thomas S. 1957. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, MA: Harvard University Press.

    MATH  Google Scholar 

  • Kuhn, Thomas S. 1962. The Structure of Scientific Revolutions. Chicago: University Press; 2nd ed. 1970.

    Google Scholar 

  • Lakatos, Imre. 1976. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge: University Press.

    Book  Google Scholar 

  • Landsman, Klaas. 2017. Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Berlin: Springer.

    Book  Google Scholar 

  • Laughlin, Robert B. 2005. A Different Universe (Reinventing Physics From the Bottom Down). New York: Basic Books.

    Google Scholar 

  • LeDoux, Joseph E. 2002. Synaptic Self: How Our Brains Become Who We Are, Viking. London: Penguin.

    Google Scholar 

  • Leibniz, Gottfried W. 1666. Dissertatio de Arte Combinatoria. Leipzig; rep. In [Leibniz PS, IV, 27–104].

    Google Scholar 

  • Leinster, Tom. 2014. Basic Category Theory. Cambridge: University Press.

    Book  Google Scholar 

  • Lemke, Jay L. 2000. Opening Up Closure: Semiotics Across Scales. Annals of the New York Academy of Sciences 901: 100–111.

    Article  ADS  Google Scholar 

  • Ludwig, Günther. 1978. Die Grundstrukturen einer physikalischen Theorie. Berlin: Springer; 2nd ed, 1990.

    Google Scholar 

  • Mach, Ernst. 1905. Erkenntnis und Irrtum, 2nd ed. 1906, 5th ed. Leipzig, 1926, Darmstadt, WBG.

    Google Scholar 

  • Margenau, Henry. 1950. The Nature of Physical Reality: A Philosophy of Modern Physics. New York: McGraw-Hill; Woodbridge. Conn.: Ox Bow Press, 1977.

    Google Scholar 

  • Marlow, A.R. (ed.). 1978. Mathematical Foundations of Quantum Theory. New York, Academic.

    Google Scholar 

  • Marshall-Pescini, S., and A. Whiten. 2008. Chimpanzees (Pan troglodytes) and the Question of Cumulative Culture: An Experimental Approach. Animal Cognition 11: 449–456.

    Article  Google Scholar 

  • Merleau-Ponty, Maurice. 1942. La structure du comportment. Paris: PUF.

    Google Scholar 

  • Merleau-Ponty, Maurice. 1945. Phénoménologie de la perception. Paris: Gallimard.

    Google Scholar 

  • Mink, J.W., R.J. Blumenschine, and D.B. Adams. 1981. Ratio of Central Nervous System to Body Metabolism in Vertebrates: Its Constancy and Functional Basis. American Journal of Physiology 241 (3): R203–212.

    Google Scholar 

  • Nielsen, M.A., and I.L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge: University Press.

    MATH  Google Scholar 

  • Peirce, Charles S. 1865. On the Logic of Science: Harvard Lectures. In [Peirce W, I, 161–302].

    Google Scholar 

  • Peirce, Charles S. 1866. The Logic of Science or Induction and Hypothesis: Lowell Lectures. In [Peirce W, I, 357–504].

    Google Scholar 

  • Peirce, Charles S. 1868a. Upon Logical Comprehension and Extension. Proceedings of the American Academy of Arts and Sciences 7: 416–432; [Peirce W, II, 70–86].

    Google Scholar 

  • Peirce, Charles S. 1868b. Some Consequences of Four Incapacities. Journal of Speculative Philosophy 2: 140–157; In [Peirce W, II, 211–242].

    Google Scholar 

  • Peirce, Charles S. 1878. Deduction, Induction, and Hypothesis. Popular Science Monthly13: 470–482; in [Peirce W, III, 323–338].

    Google Scholar 

  • Peirce, Charles S. 1884. Design and Chance. In [Peirce W, IV, 544–554].

    Google Scholar 

  • Peirce, Charles S. 1887. A Guess at the Riddle. In [Peirce W, VI, 165–210].

    Google Scholar 

  • Peirce, Charles S. 1891. The Architecture of Theories, Monist 1: 161–176. In [Peirce W, VIII, 98–110].

    Google Scholar 

  • Peirce, Charles S. 1893. Evolutionary Love. Monist 3: 176–200; in [Peirce W, VIII, 184–205].

    Google Scholar 

  • Peirce, Charles S. 1898. Reasoning and the Logic of Things: The Cambridge Conferences Lectures of 1898, Manuscript; Ed. K. L. Ketner. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Peirce, Charles S. 1901. On the Logic of Drawing History From Ancient Documents, Especially From Testimonies. In [Peirce EP, II, 75–114].

    Google Scholar 

  • Peirce, Charles S. 1903a. The Categories Defended. In [Peirce EP, II, 160–178].

    Google Scholar 

  • Peirce, Charles S. 1903b. The Seven Systems of Metaphysics. In [Peirce EP, II, 179–95].

    Google Scholar 

  • Peirce, Charles S. 1903c. Degenerate Cases. In [Peirce CP, 1.521–544].

    Google Scholar 

  • Peirce, Charles S. 1907. Pragmatism. In [Peirce EP, II, 398–433].

    Google Scholar 

  • Peirce, Charles S. 1982. Writings, vol. I. Bloomington: Indiana University Press.

    MATH  Google Scholar 

  • Peirce, Charles S. 1998. The Essential Peirce, vols. I–II. Bloomington: Indiana University Press.

    Google Scholar 

  • Peirce, Charles S. 2019. The Collected Papers, vols. I–VI, Ed. Charles Hartshorne and Paul Weiss. Cambridge, MA: Harvard University Press, 1931–1935; vols. VII–VIII (Ed. Arthur W. Burks). Cambridge, MA: Harvard University Press, 1958.

    Google Scholar 

  • Poincaré, Henri. 1897a. Le rapport de l’analyse et de la physique mathématique. Acta Mathematica 21: 331–341; rep. in [Poincaré 1991, 17–30].

    Google Scholar 

  • Poincaré, Henri. 1897b. Les idées de Hertz sur la mécanique. Revue Générale des Sciences Pures et Appliqués 8: 734–743; rep. In [Poincaré 1991, 62–86].

    Google Scholar 

  • Poincaré, Henri. 1902. La science et l’hypothèse. Paris: Flammarion.

    MATH  Google Scholar 

  • Poincaré, Henri. 1905. La Valeur de la science. Paris: Flammarion.

    MATH  Google Scholar 

  • Poincaré, Henri. 1909. La logique de l’infini. Revue de Métaphysique et de Morale 17: 461–482; rep. in [?, 7–31].

    Google Scholar 

  • Popper, Karl R. 1934. Logik der Forschung. Wien: Springer; 8th ed. Tübingen: Mohr, 1984.

    Google Scholar 

  • Quine, Willard, and van Orman. 1960. Word and Object, 1989. Cambridge, MA: MIT University Press.

    Google Scholar 

  • Quine, Willard, and van Orman. 1969. Ontological Relativity and Other Essays. New York: Columbia University Press.

    Google Scholar 

  • Raichle, M.E., and D.A. Gusnard. 2002. Appraising the Brain’s Energy Budget. Proceedings of the National Academy of Sciences USA 99: 10237–10239.

    Article  ADS  Google Scholar 

  • Ramon Fuentes, Miguel. 2016. The Concept of Function in Molecular Biology: A Theoretical Framework and a Case Study. Rome: G and B Press.

    Google Scholar 

  • Rizzolatti, G., M. Gentilucci, R.M. Camarda, V. Callese, G. Luppino, M. Matelli, and L. Fogassi. 1990. Neurons Related to Reaching-grasping Arm Movements in The Rostral Part of Area 6 (area 6a\(\beta \)). Experimental Brain Research 82: 337–350.

    Article  Google Scholar 

  • Russell, Bertrand. 1902. Letter to Frege. In From Frege to Gödel, ed. J. van Heijenoort, 124–125. Cambridge (MA).

    Google Scholar 

  • Russell, Bertrand. 1903. Principles of Mathematics, 2nd ed. 1937. London: Routledge.

    Google Scholar 

  • Schrödinger, Erwin. 1958. Mind and Matter. Cambridge: University Press; rep. in [Schrödinger 1992, 91–164].

    Google Scholar 

  • Sengupta, B., M.B. Stemmler, and K.J. Friston. 2013. Information and Efficiency in the Nervous System-a Synthesis. PLOS Computational Biology 9 (7): e1003157.

    Article  ADS  Google Scholar 

  • Shimizu, T.S., Y. Tu, and H.C. Berg. 2010. A Modular Gradient–sensing Network for Chemotaxis in Escherichia Coli Revealed by Responses to Time–varying Stimuli., Molecular Systems Biology 6 (382): 1–14.

    Article  Google Scholar 

  • Shimony, Abner. 1970. Scientific Inference. In The Nature and Function of Scientific Theories, ed. R.G. Colodny, Pittsburgh: 79–172; rep. in [Shimony 1993, I, 183–273].

    Google Scholar 

  • Smolin, Lee. 2013. Time Reborn: From the Crisis in Physics to the Future of the Universe. Boston: Houghton Mifflin Harcourt.

    Google Scholar 

  • Sperber, Dan (ed.). 2000. Metarepresentations: A multidisciplinary Perspective. Oxford: University Press.

    Google Scholar 

  • Spivak, David I. 2013. Category Theory for Scientists. Cambridge, MA: MIT Press.

    Google Scholar 

  • Still, S., D.A. Sivak, and A.J., Bell, and G.E. Crooks. 2012. Thermodynamics of Prediction. Physical Review Letters 109: 120604.

    Google Scholar 

  • Stout, D., and T. Chaminade. 2012. Stone Tools, Language and the Brain in Human Evolution. Philosophical Transactions of the Royal Society B367: 75–87.

    Article  Google Scholar 

  • Suppes, Patrick. 1960. Axiomatic Set Theory. Toronto: Van Nostrand.

    MATH  Google Scholar 

  • Uhlen, M., and F. Ponten. 2005. Antibody-Based Proteomics for Human Tissue Profiling. Molecular and Cellular Proteomics 4 (4): 384–393. https://doi.org/10.1074/mcp.R500009-MCP200.

    Article  Google Scholar 

  • von Helmholtz, Hermann L.F. 1867. Handbuch der physiologischen Optik. 2nd ed. L. Voss: Hamburg and Leipzig.

    Google Scholar 

  • von Helmholtz, Hermann L.F. 1883. Wissenschaftliche Abhandlungen, vol. 2. Hamburg: J. A. Barth.

    MATH  Google Scholar 

  • West-Eberhard, Mary Jane. 2003. Developmental Tlasticity and Evolution. Oxford: University Press.

    Google Scholar 

  • Wheeler, John A. 1983. Law Without Law. In [Marlow 1978, 9–48].

    Google Scholar 

  • Wheeler, John A. 1988. World as System Self-synthesized by Quantum Networking. IBM Journal of Research and Development 32: 4–15. https://doi.org/10.1147/rd.321.0004.

    Article  Google Scholar 

  • Wheeler, John A. 1990. Information, Physics, Quantum: The Search for Links. In [Zurek 1990, 3–28].

    Google Scholar 

  • Zermelo, Ernst. 1908. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen 65: 261–281. https://doi.org/10.1007/BF01449999.

    Article  MathSciNet  MATH  Google Scholar 

  • Zermelo, Ernst. 1930. Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae 16: 29–47.

    Article  Google Scholar 

  • Zurek, Wojciech H. (ed.). 1990. Complexity, Entropy and the Physics of Information. Redwood City: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auletta, G. (2019). Category Theory and Quantum Mechanics. In: The Quantum Mechanics Conundrum. Springer, Cham. https://doi.org/10.1007/978-3-030-16649-6_8

Download citation

Publish with us

Policies and ethics