Skip to main content

Information and Signal Exchanging in Universal Network

  • Chapter
  • First Online:
The Quantum Mechanics Conundrum
  • 1007 Accesses

Abstract

With his notion of the fabric of reality (Sect. 3.1.2), D. Deutsch,  extending ideas that were originally proposed by R. Feynman (Sect. 4.1) and J. Wheeler (Sect. 3.2.3), has contributed to change the way in which we consider the basic elements of our universe.

L’hypothèse ainsi renversée a–t–elle donc été stérile?

Loin de là, on peut dire qu’elle a rendu plus de services qu’une hypothése vraie.

Henri Poincaré, La science et l’hypothése

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Auletta (2011, Sects. 6.2–6.5) for a summary.

  2. 2.

    Collins (2010, pp. 16–17).  I recall also Armstrong (1978).

  3. 3.

    See e.g. Deutsch (2011, Chap. 11).

  4. 4.

    Wootters and Zurek (1982), Dieks (1982).  See also Auletta et al. (2009, Sect. 15.2).

  5. 5.

    See D’Ariano and Yuen (1996).

  6. 6.

    See Barnum et al. (1996) for details.

  7. 7.

    Pati and Braunstein (2000).

  8. 8.

    Ionicioiu and Terno (2011) , Peruzzo et al. (2012).  See also Afriat and Tarozzi (2006).

  9. 9.

    Nielsen and Chuang (1997).

  10. 10.

    Nielsen and Chuang (1997).

  11. 11.

    D’Ariano et al. (2017, Sect. 9.3).

  12. 12.

    Lo and Chau (1997), Mayers (1997).  See also Clifton et al. (2003).

  13. 13.

    Deutsch and Hayden (2000).

  14. 14.

    Timpson (2013, p. 105).

  15. 15.

    See also Timpson (2013, Sect. 5.3).

  16. 16.

    Timpson (2013, pp. 111–112). However, I do not share the negative conclusion of the author about information accessibility.

  17. 17.

    Landauer (1961) , Bennett (1982).

  18. 18.

    Cerf and Adami (1997).

  19. 19.

    Beltrametti and Maczyński (1991). For a general summary on entropic Bell inequalities see Auletta (2000, Sect. 42.7).

  20. 20.

    Schumacher (1990, 1991) .

  21. 21.

    Battail (2014, Sect. 3.1).

  22. 22.

    Singh et al. (2017).

  23. 23.

    For the following considerations see D’Ariano et al. (2017, Sects. 8.2–8.5).

  24. 24.

    See Ueda and Kitagawa (1992) .

  25. 25.

    See Imamoḡlu (1993) .

  26. 26.

    See Auletta et al. (2009, Sect. 4.4).

  27. 27.

    For what follows see Auletta et al. (2009, Sect. 15.3).

  28. 28.

    See Mabuchi and Zoller (1996).  See also Mensky (1996).

  29. 29.

    See Nielsen and Caves (1997) .

  30. 30.

    In Fuchs and Peres (1996)  the trade-off (in terms of measurement uncertainty relation) between information gain and state disturbance has been computed. See also Pfister and Wehner (2013).

  31. 31.

    D’Ariano et al. (2017, Sect. 2.10.3 and Sect. 7.7).

  32. 32.

    For this whole subsection see Auletta et al. (2009, Sects. 13.4–5 and 15.4).

  33. 33.

    See Pauli (1980, 17) .

  34. 34.

    See Prugovec̆ki (1977) .

  35. 35.

    See Yuen (1976) .

  36. 36.

    Gnedenko (1969, Chaps. 4–5).

  37. 37.

    Wigner (1932).  Note that the Wigner function is only one among a whole family of interrelated quasi-probability distributions.

  38. 38.

    See Royer (1989) .

  39. 39.

    See D’Ariano et al. (2017, Sects. 2.4.2 and 2.8.4).

  40. 40.

    Byron and Fuller (1969–70, II, Chap. 7).

  41. 41.

    See Auletta et al. (2009, Sect. 3.5.5).

  42. 42.

    Further details regarding the subject of this subsection can be found in Bjorken and Drell (1964, 78–89) Prugovec̆ki (1971, 520–42) .

  43. 43.

    See Dirac (1930, 125–30). For what follows see also Auletta et al. (2009, Sect. 10.5.2).

  44. 44.

    Feynman (1948), Feynman and Hibbs (1965).  See also Auletta et al. (2009, Sect. 10.8).

  45. 45.

    I follow here Auletta et al. (2009, Sect. 14.4).

  46. 46.

    Truly speaking, the choice of \(\hat{\mathcal{J}}\) is not unique and may well depend on how the system is thought to be monitored. This remark, however, does not alter the essence of the following argument.

  47. 47.

    Examination in Auletta (2011, Sects. 2.1–2.2).

  48. 48.

    Elitzur (1992).

  49. 49.

    Elitzur (1992).

  50. 50.

    Cohen–Tannoudji (1991, pp. 60–61).

  51. 51.

    Elitzur (1992).

  52. 52.

    Wheeler (1983, p. 194).

  53. 53.

    Lloyd and Ng (2004).

  54. 54.

    Clayden et al. (2001, pp. 137–139).

  55. 55.

    Battail (2014, p. 58).

  56. 56.

    Chibbaro et al. (2014).

  57. 57.

    Boltzmann (1896, Sect. 6).

  58. 58.

    Poincaré (1890).

  59. 59.

    Elitzur (1992).

  60. 60.

    Wiener (1948).

  61. 61.

    On this problem the reader may have a look at Auletta (2005a).

  62. 62.

    See Auletta (2011, Sect. 2.3).

  63. 63.

    Helstrom (1976).

  64. 64.

    Bayes (1763). See also Auletta (2011, Sects. 7.6.2 and 18.4.4).

  65. 65.

    There is another attempt at interpreting quantum mechanics by using Bayesian probabilities by Caves et al. (2002). It is also known as quantum Bayesianism, and clearly there are points in common with the view supported here. However, it is characterised by a strong subjectivity, according to which the state of a quantum system represents the degrees of belief an agent has about the possible outcomes of measurements.

  66. 66.

    Formulated in Auletta (2011, Sect. 2.3). See also Auletta and Wang (2014, Sect. 11.2).

  67. 67.

    Auletta (2011, Chaps. 2 and 12).

  68. 68.

    Kant (1787, p. 75).

  69. 69.

    Kant (1787).

  70. 70.

    On this see Einstein (1949, pp. 687–88).

  71. 71.

    Cohen–Tannoudji (1991, pp. 67–69).

  72. 72.

    Cohen–Tannoudji (1991, p. 59).

  73. 73.

    Cohen–Tannoudji (1991, p. 117).

  74. 74.

    Landauer (1961, 1996),  Bennett (1982), Bennett and Landauer (1985), Lloyd (2000).

  75. 75.

    Cohen–Tannoudji (1991, pp. 71–72).

  76. 76.

    Elitzur (1992).

  77. 77.

    Kuhlmann (2013).

  78. 78.

    D’Ariano et al. (2017, Sects. 3.3 and 5.2).

  79. 79.

    See D’Ariano et al. (2017, Sect. 8.6).

  80. 80.

    See D’Ariano et al. (2017, Sects. 7.5–7.6, 8.1).

  81. 81.

    See Auletta et al. (2009, Sect. 9.11.1).

  82. 82.

    D’Ariano et al. (2017, Sect. 8.6).

  83. 83.

    I follow here Auletta et al. (2009, Sect. 17.8.5). On computation and decoherence see Schlosshauer (2007, Chap. 7).

  84. 84.

    D’Ariano et al. (2017, Sect. 7.8).

  85. 85.

    See e.g. Bohm and Hiley (1993, Sects. 5.1–5.2).

  86. 86.

    See D’Ariano et al. (2017, Sect. 7.1).

  87. 87.

    See Auletta (2005b, 2006a).

  88. 88.

    For what follows see Auletta (2011, Sect. 2.3). See also Auletta and Wang (2014, Sect. 12.5).

  89. 89.

    D’Ariano et al. (2017, Sect. 2.8.1).

  90. 90.

    See e.g. Timpson (2013, Sect. 3.6).

  91. 91.

    Shannon (1948).

  92. 92.

    Quoted in Battail (2014, p. 29).

  93. 93.

    Geroch (1978, p. 3) tells us that events need to be considered as a part of the world in which we live and not as a theoretical construct.

  94. 94.

    D’Ariano (2010).

  95. 95.

    D’Ariano et al. (2017, Sect. 2.4 and Chap. 5).

  96. 96.

    D’Ariano et al. (2017, Sect. 5.4).

  97. 97.

    Poincaré (1902, p. 45 and 51–52).

  98. 98.

    D’Ariano and Tosini (2013)  D’Ariano et al. (2017, Sect. 5.1).

  99. 99.

    D’Ariano et al. (2017, Sect. 2.8.3 and Sect. 4.1).

  100. 100.

    D’Ariano et al. (2017, Sect. 5.3).

  101. 101.

    D’Ariano et al. (2017, Sect. 4.2 and Chap. 10).

  102. 102.

    D’Ariano et al. (2017, Sect. 2.4.1, Sect. 4.2, Chap. 6).

  103. 103.

    D’Ariano et al. (2017, Sect. 3.3).

  104. 104.

    D’Ariano et al. (2017, Sects. 4.3 and 8.3).

  105. 105.

    D’Ariano et al. (2017, Sect. 2.10 and Chap. 7).

  106. 106.

    D’Ariano et al. (2017, Sect. 7.11).

  107. 107.

    D’Ariano et al.  (2017, Sects. 10.2–10.3).

References

  • Afriat, A., and G. Tarozzi. 2006. Can Nothing Cause Nonlocal Quantum Jumps?. In Quantum Mechanics: Are There Quantum Jumps?, A. Bassi et al. (eds.) 3–7. New York: American Institute of Physics, Melville.

    Google Scholar 

  • Armstrong, David M. 1978. A Theory of Universals. Cambridge: Cambridge University Press.

    Google Scholar 

  • Auletta, Gennaro. 2000. Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific; rev. ed. 2001.

    Google Scholar 

  • Auletta, Gennaro. 2005a. Quantum Information and Inferential Reasoning. Foundations of Physics 35: 155–169.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, Gennaro. 2005b. Quantum Information as a General Paradigm. Foundations of Physics 35: 787–815.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, Gennaro. 2006a. The Problem of Information, in [Auletta 2006b, 109–127].

    Google Scholar 

  • Auletta, Gennaro (ed.). 2006b. The Controversial Relations Between Science and Philosophy: A Critical Assessment. Libreria Editrice Vaticana: Vatican City.

    Google Scholar 

  • Auletta, Gennaro. 2011. Cognitive Biology: Dealing with Information from Bacteria to Minds. Oxford: University Press.

    Google Scholar 

  • Auletta, G., and S.Y. Wang. 2014. Quantum Mechanics for Thinkers. Singapore: Pan Stanford Publishing. https://doi.org/10.4032/9789814411721.

  • Auletta, G., M. Fortunato, and G. Parisi. 2009. Quantum Mechanics. Cambridge: University Press, rev. paperback ed. 2013.

    Google Scholar 

  • Barnum, H., C.M. Caves, C.A. Fuchs, R. Jozsa, and B. Schumacher. 1996. Noncommuting Mixed States Cannot Be Broadcast. Physical Review Letters 76: 2818–2821.

    Article  ADS  Google Scholar 

  • Battail, Gérard. 2014. Information and Life. Berlin: Springer.

    Book  Google Scholar 

  • Bayes, Thomas. 1763. An Essay Toward Solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London 53: 370–418.

    Google Scholar 

  • Beltrametti, E., and M.J. Maczyński. 1991. On a Characterization of Classical and Nonclassical Probabilities. Journal of Mathematical Physics 32: 1280–1286.

    Article  ADS  MathSciNet  Google Scholar 

  • Bennett, Charles H. 1982. The Thermodynamics of Computation. A Review. International Journal of Theoretical Physics 21: 905–940.

    Article  ADS  Google Scholar 

  • Bennett, C.H., and R. Landauer. 1985. The Fundamental Physical Limits of Computation. Scientific American 2531: 48–56. https://doi.org/10.1038/scientificamerican0785-48.

    Article  ADS  Google Scholar 

  • Bjorken, J.D., and S.D. Drell. 1964. Relativistic Quantum Mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Bohm, D., and B.J. Hiley. 1993. The Undivided Universe: An Ontological Interpretation of Quantum Theory. London: Routledge.

    Google Scholar 

  • Bokulich, A., and G. Jaeger (eds.). 2010. Philosophy of Quantum Information and Entanglement. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boltzmann, Ludwig. 1896. Vorlesungen über Gastheorie I. Leipzig, J. A: Barth.

    Google Scholar 

  • Byron Jr., F.W., and R.W. Fuller. 1969–70. Mathematics of Classical and Quantum Physics, 1969–1970. New York: Dover, 1992.

    Google Scholar 

  • Caves, C.M., C.A. Fuchs, and R. Schack. 2002. Quantum Probabilities as Bayesian Probabilities. Physical Review A 65: 022305.

    Google Scholar 

  • Cerf, N.J., and C. Adami. 1997. Negative Entropy and Information in Quantum Mechanics. Physical Review Letters 79: 5194–5197.

    Article  ADS  MathSciNet  Google Scholar 

  • Chibbaro, S., L. Rondoni, and A. Vulpiani. 2014. Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline. Heidelberg: Springer. https://doi.org/10.1007/978-3-319-06361-4.

    Book  Google Scholar 

  • Clayden, J., N. Greeves, S. Warren, and P. Wothers. 2001. Organic Chemistry. Oxford: University Press.

    Google Scholar 

  • Clifton, R., J. Bub, and H. Halvorson. 2003. Characterizing Quantum Theory in Terms of Information-Theoretic Constraints. Foundations of Physics 33: 1561–1591.

    Article  MathSciNet  Google Scholar 

  • Cohen-Tannoudji, Gilles. 1991. Les Constantes Universelles. Paris: Hachette.

    Google Scholar 

  • Collins, Harry. 2010. Tacit and Explicit Knowledge. Chicago: University of Chicago Press.

    Google Scholar 

  • D’Ariano, G. Mauro. 2010. Probabilistic theories: What is special about Quantum Mechanics?. in [Bokulich/Jaeger 2010, 85–126].

    Google Scholar 

  • D’Ariano, G.M., and A. Tosini. 2013. Emergence of Space-Time from Topologically Homogeneous Causal Networks. Studies in History and Philosophy of Modern Physics 44: 294–299. https://doi.org/10.1016/j.shpsb.2013.04.003.

    Article  ADS  MathSciNet  Google Scholar 

  • D’Ariano, G.M., and H.P. Yuen. 1996. Impossibility of Measuring the Wave Function of a Single Quantum System. Physical Review Letters 76: 2832–2835.

    Article  ADS  Google Scholar 

  • D’Ariano, M., G. Chiribella, and P. Perinotti. 2017. Quantum Theory from First Principles: An Informational Approach. Cambridge: University Press.

    Google Scholar 

  • Deutsch, David. 2011. The Beginning of Infinity: Explanations that Transform the World. London: Penguin Books.

    Google Scholar 

  • Deutsch, D., and P. Hayden. 2000. Information Flow in Entangled Quantum Systems. Proceedings of the Royal Society A456: 17759–17774. https://doi.org/10.1098/rspa.2000.0585.

    Article  ADS  MathSciNet  Google Scholar 

  • Dieks, Dennis. 1982. Communication by EPR Devices. Physics Letters 92A: 271–272.

    Article  ADS  Google Scholar 

  • Dirac, Paul A.M. 1930. The Principles of Quantum Mechanics, 4th ed., Oxford: Clarendon, 1958, 1993.

    Google Scholar 

  • Einstein, Albert. 1949. Remarks Concerning the Essays Brought Together in This Co-operative Volume, in [Schilpp 1949, 665–688].

    Google Scholar 

  • Elitzur, Avshalom C. 1992. Locality and Indeterminism Preserve the Second Law. Physics Letters A 167: 335–340. https://doi.org/10.1016/0375-9601(92)90268-q.

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman, R.P., and A.R. Hibbs. 1965. Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965; emended edition by Daniel F, 2005. New York, Dover: Styer.

    Google Scholar 

  • Feynman, Richard P. 1948. Space-Time Approach to Non-Relativistic Quantum Mechanics. Review of Modern Physics 20: 367–387.

    Article  ADS  MathSciNet  Google Scholar 

  • Fuchs, C.A., and A. Peres. 1996. Quantum-State Disturbance versus Information Gain: Uncertainty Relations for Quantum Information. Physical Review A53: 2038–2045.

    Article  ADS  Google Scholar 

  • Geroch, Robert. 1978. General Relativity from A to B. Chicago: University of Chicago Press.

    Google Scholar 

  • Gnedenko, Boris V. 1969. The Theory of Probability. Moscow: Mir.

    Google Scholar 

  • Helstrom, Carl W. 1976. Quantum Detection and Estimation Theory. New York: Academic.

    Google Scholar 

  • Imamo\(\overline{\rm g}\)lu, A. 1993. Logical Reversibility in Quantum-Nondemolition Measurements. Physical Review A47: R4577–R4580.

    Google Scholar 

  • Ionicioiu, R., and D.R. Terno. 2011. Proposal for a Quantum Delayed-Choice Experiment. Physical Review Letters 107: 230406.

    Google Scholar 

  • Kant, A. 1968. Kants Werke. Akademie Textausgabe. Berlin: W. de Gruyter.

    Google Scholar 

  • Kant, Immanuel. 1787. Kritik der reinen Vernunft, 2nd ed. III v. of [Kant A].

    Google Scholar 

  • Kuhlmann, Meinard. 2013. What is Real? Scientific American 8: 32–39.

    Google Scholar 

  • Landauer, Rolf. 1961. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development 5: 183–191.

    Article  MathSciNet  Google Scholar 

  • Landauer, Rolf. 1996. Minimal Energy Requirements in Communication. Science 272: 1914–1919.

    Article  ADS  MathSciNet  Google Scholar 

  • Lloyd, Seth. 2000. Ultimate Physical Limits to Computation. Nature 406: 1047–1054. https://doi.org/10.1038/35023282.

    Article  ADS  Google Scholar 

  • Lloyd, S., and Y.J. Ng. 2004. Black Hole Computers. Scientific American 291 (5): 52–61. https://doi.org/10.1038/scientificamerican1104-52.

    Article  ADS  Google Scholar 

  • Lo, H.-K., and H. Chau. 1997. Is Quantum Bit Commitment Really Possible? Physical Review Letters 78: 3410–3413. https://doi.org/10.1103/PhysRevLett.78.3410.

    Article  ADS  Google Scholar 

  • Mabuchi, H., and P. Zoller. 1996. Inversion of Quantum Jumps in Quantum Optical Systems Under Continuous Observation. Physical Review Letters 76: 3108–3111.

    Article  ADS  Google Scholar 

  • Mayers, Dominic. 1997. Unconditionally Secure Quantum Bit Commitment is Impossible. Physical Review Letters 78: 3414–3417. https://doi.org/10.1103/PhysRevLett.78.3414.

    Article  ADS  Google Scholar 

  • Mensky, Michael B. 1996. A Note on Reversibility of Quantum Jumps. Physics Letters 222A: 137–140.

    Article  ADS  MathSciNet  Google Scholar 

  • Nielsen, M.A., and C.M. Caves. 1997. Reversible Quantum Operations and Their Application to Teleportation. Physical Review A55: 2547–2556.

    Article  ADS  MathSciNet  Google Scholar 

  • Nielsen, M.A., and I.L. Chuang. 1997. Programmable Quantum Gate Arrays. Physical Review Letters 79: 321–324. https://doi.org/10.1103/PhysRevLett.79.321.

    Article  ADS  MathSciNet  Google Scholar 

  • Pati, A.K., and S.L. Braunstein. 2000. Impossibility of Deleting an Unknown Quantum State. Nature 404: 164–165.

    ADS  Google Scholar 

  • Pauli, Wolfgang. 1980. General Principles of Quantum Mechanics. Berlin: Springer, engl. trans. of [Pauli 1933].

    Google Scholar 

  • Peruzzo, A., P. Shadbolt, N. Brunner, S. Popescu, and J.L. O’Brien. 2012. A Quantum Delayed Choice Experiment. Science 338: 634–637.

    Google Scholar 

  • Pfister, C., and S. Wehner. 2013. An information-Theoretic Principle implies that any Discrete Physical Theory is Classical. Nature Communications 41851: https://doi.org/10.1038/ncomms2821.

  • Poincaré, O. 1928. OEuvres. Paris: Gauthier-Villars.

    Google Scholar 

  • Poincaré, Henri. 1890. Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica 13: 1–270; rep. in [Poincaré O, VII, 262–490].

    Google Scholar 

  • Poincaré, Henri. 1902. La science et l’hypothèse, Paris. Flammarion.

    Google Scholar 

  • Prugovec̆cki, Eduard,. 1977. Information-Theoretical Aspects of Quantum Measurement. International Journal of Theoretical Physics 16: 321–333.

    Article  ADS  Google Scholar 

  • Prugovec̆ki, Eduard. 1971. Quantum Mechanics in Hilbert Space. 2nd ed.: New York: Academic Press, 1981.

    Google Scholar 

  • Royer, Antoine. 1989. Measurement of Quantum States and the Wigner Function. Foundations of Physics 19: 3–30.

    Article  ADS  MathSciNet  Google Scholar 

  • Schilpp, Arthur (ed.). 1949. Albert Einstein. Philosopher-Scientist. La Salle (Illinois): Open Court, 1949, 3d ed. 1988.

    Google Scholar 

  • Schlosshauer, Maximilian. 2007. Decoherence and the Quantum-to-Classical Transition. Berlin: Springer.

    Google Scholar 

  • Schumacher, Benjamin W. 1990. Information from Quantum Measurements, in [Zurek 1990, 29–37].

    Google Scholar 

  • Schumacher, Benjamin W. 1991. Information and Quantum Nonseparability. Physical Review A44: 7047–7052.

    Article  ADS  MathSciNet  Google Scholar 

  • Shannon, Claude E. 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27 (379–423): 623–656.

    Article  MathSciNet  Google Scholar 

  • Singh, P., S.D. Joshi, R.K. Patney, and K. Saha. 2017. The Fourier Decomposition Method for Nonlinear and Nonstationary Time Series Analysis. Proceedings of the Rpoytal Society A 473: 20160871. https://doi.org/10.1098/rspa.2016.0871.

    Article  ADS  MathSciNet  Google Scholar 

  • Timpson, Christopher G. 2013. Quantum Information Theory and the Foundations of Quantum Mechanics. Oxford: University Press.

    Google Scholar 

  • Ueda, M., and M. Kitagawa. 1992. Reversibility in Quantum Measurement Processes. Physical Review Letters 68: 3424–3427.

    Article  ADS  MathSciNet  Google Scholar 

  • Wheeler, John A. 1983. Law Without Law, in [Wheeler/Zurek 1983, 182–213].

    Google Scholar 

  • Wheeler, J.A., and W. Zurek (eds.). 1983. Quantum Theory and Measurement. University Press: Princeton.

    Google Scholar 

  • Wiener, Norbert. 1948. Cybernetics, or Control and Communication in the Animal and in the Machine. 2nd ed. Cambridge: MIT Press, 1961, 1965.

    Google Scholar 

  • Wigner, Eugene P. 1932. On the Quantum Correction for Thermodynamic Equilibrium. Physical Review 40: 749–759.

    Article  ADS  Google Scholar 

  • Wootters, W.K., and W.H. Zurek. 1982. A Single Quantum Cannot Be Cloned. Nature 299: 802–803.

    Article  ADS  Google Scholar 

  • Yuen, Horace P. 1976. Two-Photon Coherent States of the Radiation Field. Physical Review A13: 2226–2243.

    Article  ADS  MathSciNet  Google Scholar 

  • Zurek (ed.). 1990. Complexity, Entropy and the Physics of Information. Redwood City: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auletta, G. (2019). Information and Signal Exchanging in Universal Network. In: The Quantum Mechanics Conundrum. Springer, Cham. https://doi.org/10.1007/978-3-030-16649-6_6

Download citation

Publish with us

Policies and ethics