Skip to main content

The Main Interpretations

  • Chapter
  • First Online:
  • 1069 Accesses

Abstract

I have grouped the main problems in interpreting QM in the previous chapter. In the present chapter, we shall deal again with these four groups of problems (formalism, measurement, non-locality and causality) but by introducing the reader to the main solutions that have given to them and critically evaluating them. In fact, only a careful examination of what has been said on the subject could help us to find an original way to see the problems. It helps us to restrict the range of the viable pieces of interpretation by excluding those hypotheses that, for one reason or the other, cannot work and thus to attribute the right values to those hypotheses that resist critical analysis. I stress that no interpretation or hypothesis can be dismissed in few words for at least two good reasons: (i) QM looks like a complex array of puzzles, what requires extreme care in making any assertion, and (ii) all of these interpretations have been provided by excellent scholars who have tried to deeply penetrate that riddle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For a quick summary see Auletta (2004b).

  2. 2.

    London and Bauer (1939) .

  3. 3.

    For this example see Auletta et al. (2009, Sect. 9.1).

  4. 4.

    See Lüders (1951) .

  5. 5.

    Wigner (1961).  See also Stapp (1982, 1993).

  6. 6.

    Apart from the Wigner’s theorem (Sect. 1.2.5), I recall here the quasi-probability Wigner function (of both position and momentum), important especially in quantum optics. I also recall his crucial contributions to group theory and its applications to QM.

  7. 7.

    Wheeler (1983, p. 184).  It has been pointed out that from 1930s on Bohr considered the term phenomenon as referred to a dynamical process and not to a state (Stachel 2017) .

  8. 8.

    Although we can find some sparse statements of Bohr that go in this direction (Bohr 1948; Home and Whitaker 2007, p. 61).

  9. 9.

    For a similar statement see Eddington (1939, p. 50) .

  10. 10.

    For perception this was shown already by the Gestalt school.  For a short summary see Auletta (2011a, Sect. 4.4.4).

  11. 11.

    Zeilinger (2005) .

  12. 12.

    Kant (1787).  A point on which also Einstein agreed (Einstein 1934, p. 166) .

  13. 13.

    Berkeley (1710) .

  14. 14.

    It is not by chance that the idealist philosopher G. W. F. Hegel  vindicated the supremacy of the ‘dialectical method’, that is, of the procedures over the facts.

  15. 15.

    See Geroch (1978, p. 35) .

  16. 16.

    The epoché is a notion introduced in philosophy by the father of phenomenology (Edmund Husserl 1859–1938; Husserl 1931) .

  17. 17.

    Wigner (1960).

  18. 18.

    Carnap (1928), Margenau (1950, Sect. 4.5) .

  19. 19.

    Munowitz (2005, p. 43).

  20. 20.

    Deutsch (1997, p. 57), Auletta (2011a, Chaps. 2 and 4). It seems to me that Einstein goes in the same direction when he says that there are conceptual constructions but they need to be validated in their reference to the “real” (Einstein 1949b) .

  21. 21.

    Peirce (1898, p. 170).  A synthetic examination of this issue can be found in Auletta (2011c Sect. 2.1.4). See also Popper (1982, Preface).

  22. 22.

    As pointed out in Peirce (1877).  This was very well understood by the Scottish philosopher Thomas Reid (1710–1796) (Reid 1764) .

  23. 23.

    As also remarked in Heisenberg (1952, p. 22, 30) .

  24. 24.

    Heisenberg (1927).  On the problem see also Auletta (2000, Sect. 6.2).

  25. 25.

    Renninger (1960).  In his reply, annexed to Renninger’s paper, Heisenberg essentially reiterates his instrumentalist standpoint.

  26. 26.

    See Auletta (2000, Sect. 14.2.1).

  27. 27.

    As pointed out in Ballentine (1970). On the history of the problem see Jammer (1974).  See also Adler (2004) and Auletta (2000, Sects. 6.5, 23.1) for a summary of these interpretations.

  28. 28.

    Peres and Zurek (1982).

  29. 29.

    Everett (1957) .

  30. 30.

    Schrödinger (1935a) .

  31. 31.

    Spinoza (1677).  The reader interested in this kind of subtleties may consult (Auletta 1994, Chap. 2).

  32. 32.

    Deutsch (2011, Chap. 12) .

  33. 33.

    Dewitt (1970, 1971) . See also Everett (1973) .

  34. 34.

    Zurek (1981).  See also Auletta and Wang (2014, Sect. 9.4).

  35. 35.

    Basic references are Wang et al. (1991), Scully et al. (1991) .

  36. 36.

    For the relevance of the context see also Epperson and Zafiris (2013, p. 92) .

  37. 37.

    Zurek (2010, p. 410).

  38. 38.

    As affirmed in Wallace (2012, Sect. 1.9) .

  39. 39.

    A certain reject of the measurement problem by the scientific community is well expressed by the title “Against‘Measurement”’ of reference (Bell 1990).

  40. 40.

    The problem was discussed in Graham (1973)  where the solution offered appears to be ad hoc. See also Maudlin (1994, p. 5).  For a collection of different points of view on such an issue see Saunders et al. (2010, Parts 3–4) .

  41. 41.

    As in Wallace (2012, Chap. 4) .

  42. 42.

    On this stuff see also Norsen (2017, Sect. 10.2) .

  43. 43.

    Leibniz (1686, 1710). For an examination of the problem see also Auletta (1994, Chap. 4).

  44. 44.

    Lewis (1986) .

  45. 45.

    Leibniz an Arnauld, 14th July 1686, in Leibniz (2019, II, pp. 53–54) : “Si dans la vie de quelque personne et même dans tout cet univers quelque chose alloit autrement qu’elle ne va, rien nous empêcheroit de dire que se seroit une autre personne ou un autre universe possible”.

  46. 46.

    Deutsch (1997, p. 93) .

  47. 47.

    As pointed out in Auletta (2009). Once, addressing the audience of a symposium, D. Deutsch has said: “I’ll start with a simple fact: in this room, in some nearby universes, Hugh Everett is here with us, celebrating. Perhaps he’s there, in that seat where Simon is. And therefore, in those universes, Simon is somewhere else” (Deutsch 2010, p. 542) .

  48. 48.

    Deutsch (1997, p. 126) .

  49. 49.

    Wallace (2010, p. 54) .

  50. 50.

    The problem was first raised in Barrow and Tipler (1986).  For a different point of view on the subject see Rees (1999).  See also Tegmark et al. (2006).  The existence of natural constants does not seem to be in contrast with the relational standpoint that I support. With the words of Robert Laughlin, “all the fundamental constants require an environmental context to make sense” (Laughlin 2005, p. 19).

  51. 51.

    Tegmark (2003) .

  52. 52.

    Zurek (2004, 2007, 2009).  See also Smolin (1997).

  53. 53.

    There is a whole debate on this subject: see Lockwood (1996), Deutsch (1996), Chalmers (1996).  See also Auletta (2004b). This was actually an important idea in oriental philosophy: see Schrodinger (1958, Chap. 4) and also Shimony (1981) .

  54. 54.

    The first seeds of this new approach can be found in Zeh (1970).  For a wide but rather technical account see Auletta et al. (2009, Sect. 9.4).

  55. 55.

    This was the subject of what is become now a classical study (Zurek 1982).  For a good and extensive introduction to decoherence see Schlosshauer (2007) .

  56. 56.

    A point of view strongly supported in Joos and Zeh (1985).  See also Giulini et al. (1996), Schlosshauer (2007, Chap. 3) .

  57. 57.

    Quoted in Mehra and Rechenberg (1982, VI, p. 754).

  58. 58.

    Joos and Zeh (1985),  Schlosshauer (2007, p. 135) .

  59. 59.

    See Hartle and Hawking (1983), Griffiths (1984), Halliwell (1993). See also Wallace (2012, Sect. 3.9) .

  60. 60.

    Halliwell (2010).

  61. 61.

    Zurek (1989a, b), Barnett and Phoenix (1989), Cerf and Adami (1997) .  See also Auletta et al. (2009, Sect. 17.2), Auletta and Wang (2014, Sect. 11.7).

  62. 62.

    Zurek (2007, 2013).

  63. 63.

    Zurek (2010).

  64. 64.

    Elby and Bub (1994).  See also Auletta et al. (2009, Sect. 9.4.1).

  65. 65.

    Bell (1990).

  66. 66.

    For a deeper understanding of this issue I recommend (Zwolak and Zurek 2013).  I shall come back on these problems.

  67. 67.

    As shown in Zurek (1982, 1991).

  68. 68.

    Wallace (2010) .

  69. 69.

    See Paz et al. (1993, 489–94) .

  70. 70.

    For the use of the notion of global see also Schlosshauer (2007, Sect. 2.3) .

  71. 71.

    Brune et al. (1996),  Monroe et al. (1996).

  72. 72.

    At one moment Bohr says that “our interpretation of the experimental material rests essentially upon the classical concepts” (Bohr 1928) .

  73. 73.

    Pioneering studies are Wootters and Zurek (1979),  Mittelstaedt et al. (1987).  See also De Muynck (2002).

  74. 74.

    Peirce (1891).

  75. 75.

    Mehra and Rechenberg (1982, VI, p. 709).  In fact, Heisenberg explicitly criticised this point: see also Heisenberg (1969, Chap. 6);  Mehra and Rechenberg (1982, VI, p. 738 and ff.).

  76. 76.

    In general, Einstein was quite sympathetic with the views of Schrödinger (Home and Whitaker 2007, pp. 33–34, 86),  at least until 1935.

  77. 77.

    For deepening the subject see Lindblad (1973, 1983) .

  78. 78.

    Tegmark et al. (2006) .

  79. 79.

    Serjeant (2010, Chap. 6) .

  80. 80.

    For a short summary on classical information theory see Khinchin (1957).  On quantum entropy see the rather technical book (Ohya and Petz 1993).

  81. 81.

    Shannon (1948).

  82. 82.

    For this thermodynamical quantities the reader may consult a textbook like (Huang 1963) .

  83. 83.

    Attempts at falsifying Shannon’s measure of information in its application to QM have proved to be not very successful so far. For a relative recent approach in this sense see Brukner and Zeilinger (1999, 2001, 2005)  and relative literature: (Mana 2004; Shafiee et al. 2006).

  84. 84.

    Wehrl (1978).  This is an extensive paper on the subject.

  85. 85.

    Lieb (1975).

  86. 86.

    For some additional considerations see Auletta (2011a, Chap. 2).

  87. 87.

    For a measure of entanglement see Vedral et al. (1997).

  88. 88.

    Barnett and Phoenix (1989).  See also Auletta et al. (2009, Sect. 17.2).

  89. 89.

    See Barnett and Phoenix (1991)  for details on these proofs.

  90. 90.

    Deutsch (1983).  See also Nielsen and Chuang (2000, p. 503). For an overview of other proposals see Auletta (2000, Sect. 42.2).

  91. 91.

    I synthesise here the results of Partovi (1989).  See also Auletta et al. (2009, Sect. 17.3).

  92. 92.

    Araki and Lieb (1970).  See also Wehrl (1978) .

  93. 93.

    Although there is often a difference between Boltzmann and Shannon entropy related to the degrees of freedom (which in general are higher in the former case), when we deal with elementary particles they converge (Bekenstein 2003).

  94. 94.

    As recalled in Auletta (2011c, Sect. 3.2.1).

  95. 95.

    Quoted in Shimony (1965, p. 317). Shimony defines Schrödinger as a realist.

  96. 96.

    Wheeler (1990) .

  97. 97.

    They are formulated in Bell (1990).

  98. 98.

    A personal communication reported in Auletta (2011a, p. 38).

  99. 99.

    Planck (1922) .

  100. 100.

    Auletta (2011a, Sect. 2.1).

  101. 101.

    Timpson (2013, Sects. 2.2.5, 4.4).

  102. 102.

    As pointed out in Schumacher (1990), Rozema et al. (2014).  See also Auletta (2006b, 2011a, Sect. 2.2.2).

  103. 103.

    See also Deutsch (1997, p. 97) .

  104. 104.

    Holevo (1998).  See also Nielsen and Chuang (2000, Sect. 12.1.1).

  105. 105.

    A good and basic textbook is Ling and Xing (2004) .

  106. 106.

    On quantum computation a good textbook is Nielsen and Chuang (2000).  For a short summary of the subject see Auletta et al. (2009, Sect. 17.7), Auletta and Wang (2014, Sect. 11.4).  I shall come back on these problems.

  107. 107.

    D’Ariano et al. (2017, Sect. 12.3) .

  108. 108.

    On this distinction see Auletta (2011c, Sect. 3.2.5).

  109. 109.

    Conway and Kochen (2006, 2009) .

  110. 110.

    Zurek (2013).

  111. 111.

    This is extensively discussed in Auletta (2011a, Chaps. 7–11). See literature quoted there.

  112. 112.

    The reader may have a look at Auletta (2011a, Sect. 2.2).

  113. 113.

    As pointed out in Auletta (2006b).

  114. 114.

    Rovelli (1996, 2005) .

  115. 115.

    Bennett (1973).

  116. 116.

    Shannon (1948).

  117. 117.

    Schrödinger (1992) .

  118. 118.

    Brillouin (1962).

  119. 119.

    Lieb (1975).

  120. 120.

    On this issue see Ott (1993), Schuster (1988) .

  121. 121.

    On this point see Cohen-Tannoudji (1991, pp. 52–53, 68–69) .

  122. 122.

    Shannon (1948).  See also Nielsen and Chuang (2000, Sect. 12.2.1).

  123. 123.

    On this see Battail (2014, p. 56) .

  124. 124.

    Laplace (1796, pp. 541–44) .

  125. 125.

    The reference papers in this subject are Plesch and Buz̆ek (2010) for the theoretical study and (Rozema et al. 2014)  for the performed experiment.

  126. 126.

    This is likely due especially to Podolsky (Home and Whitaker 2007, p. 109),  although I think that Einstein considerably contributed.

  127. 127.

    The reader may also have a look at Auletta et al. (2009, Sect. 16.1), Auletta and Wang (2014, Sect. 10.1).

  128. 128.

    On these problems see Jammer (1974, Chap. 6).  See also Harrigan and Spekkens (2010),  although I disagree with the authors (and with A. Fine,  who first introduced this idea in Fine (1981)) that the EPR paper does not correspond to Einstein’s view (the fact that Podolsky may have been the material extensor of the article tells us nothing about the issue at the stake), and consider their judgement about the presumed “opaque” logical structure of the argument a true misunderstanding of what the paper says. The argument is clearly complex but not obscure: it could have been reduced to implication (3.99) and an experimental evidence, but to assume the hypothetical validity of the uncertainty relations was mandatory.

  129. 129.

    As pointed out in Howard (1992) .

  130. 130.

    Einstein et al. (1935) .

  131. 131.

    See also Margenau (1950, pp. 299–300) .

  132. 132.

    Bohr (1935a, b).  See also Auletta and Wang (2014, Sect. 10.2).

  133. 133.

    Bohr (1928) .

  134. 134.

    On this point see Braginsky and Khalili (1992, pp. 40–49).  For a short summary see also Auletta et al. (2009, Sect. 9.11.1).

  135. 135.

    Bohr (1935a) .

  136. 136.

    This way of thinking pertains the family of forms of non-monotonic reasoning that are typical for empirical problems especially when induction is involved: see Pearl (1988, p. 59) .

  137. 137.

    Quoted in Home and Whitaker (2007, p. 64).

  138. 138.

    For a look at the different forms that the Copenhagen Interpretation has received see Auletta (2000, Chaps. 6–8). See also Shimony (1981)  on Bohr’s epistemology.

  139. 139.

    See, e.g. Deutsch (2011, Chap. 12) .

  140. 140.

    Already in 1918 Einstein tells us that “no logical path leads from perceptions to the principles of the theory” (Einstein 1918, p. 109).  See also Einstein (1930, p. 114). This conviction accompanies the great physicist through his whole life since still in 1952 he tells us that “there is, of course, no logical way to the establishment of a theory”, quoted in Rindler (2001, p. 33).  From this correct premise, Einstein infers that “all concepts, even those that are closest to experience, are from the point of view of logic freely chosen conventions” (“Alle Begriffe, auch die erlebnis–nächsten, sind vom logischen Gesichtspunkte aus freie Setzungen”) (Einstein 1949a, pp. 12 and 13) .

  141. 141.

    As stressed by authoritative epistemologists (Hempel 1953, Nagel 1961).  In Margenau (1950, Sect. 8.2) one speaks of “latency”. See also D’Espagnat (1995, pp. 221–22),  Bird (2007) .

  142. 142.

    Whitaker (2004),  Maudlin (1994) .

  143. 143.

    It is not by chance that in Bohr (1949, p. 230)  Bohr speaks of “the necessity of considering the whole experimental arrangement”.

  144. 144.

    Bohr (1935b) .

  145. 145.

    Although doubts can be cast on whether Bohr had ever consequently supported an interactionist point of view (Stachel 2017) .

  146. 146.

    Schrödinger (1935a, b). See also Auletta and Wang (2014, Sect. 10.2).

  147. 147.

    Schrödinger (1936) .

  148. 148.

    Schrödinger (1936). For a summary see also Auletta (2000, Sect. 34.1).

  149. 149.

    Mehra and Rechenberg (1982, VI, p. 744).

  150. 150.

    As proposed in Auletta (2007).

  151. 151.

    For historical survey see Jammer (1974, Chap. 7). According to Jammer, hidden variables are one of the most recent attempts at explaining visible things with invisible ones. Einstein himself may have initially contributed (Home and Whitaker 2007, p. 89),  although is engagement appears modest and he was never particularly supportive of this research project (Jammer 1974, pp. 254–55) .

  152. 152.

    Auletta (2000, p. 543).

  153. 153.

    Auletta (2000, p. 544).

  154. 154.

    Bohm (1952) .

  155. 155.

    de Broglie (1956).  On this issue see also Auletta (2000, Sect. 28.1), Auletta et al. (2009, Sect. 16.3).

  156. 156.

    See Auletta (2000, Sects. 28.2–28.3).

  157. 157.

    As proposed in Bialynicki and Mycielski (1976).  Experimental tests disproved this hypothesis (Shull et al. 1980).

  158. 158.

    The original idea was formulated in Selleri (1969).  There is wide literature on that issue (Garuccio et al. 1982; Croca 1987;  Hardy 1992;  Zou et al. 1992;  Auletta and Tarozzi 2004).  See also Fano (2014) .

  159. 159.

    See Jammer (1974, Sect. 7.5) .

  160. 160.

    On this subject I recommend the extensive book (Holland 1993).  For understanding Bohm’s quantum potential theory I recommend (Bricmont 2016) .

  161. 161.

    On this subject see Auletta et al. (2009, Sect. 10.5.3).

  162. 162.

    Bohm (1980), Bohm and Hiley (1993), Holland (1993), Hiley (1999) .  See also Auletta (2000, Sect. 32.6).   Bohm proposed that the multidimensionality of information should correspond to a certain extension of the Hilbert space’s structure.

  163. 163.

    This seems related to the fact, pointed out by the German physicist Walther Bothe (1891–1957), that, even when wave functions of the two EPR particles are factorised (that is, are in a product state of the kind (1.388)), the HVs of the two systems can be still mutually dependent (Home and Whitaker 2007, p. 89).

  164. 164.

    On this see Auletta (2000, p. 561).

  165. 165.

    Englert et al. (1994).

  166. 166.

    One has spoken of exorcised Bohmian theory (Conway and Kochen 2006, p. 1454) .

  167. 167.

    Hiley (1999).

  168. 168.

    Originally proposed in Aharonov and Bohm (1959).  There is a now a wide literature in this subject and a helpful textbook is Peshkin and Tonomura (1989).

  169. 169.

    Berry (1984, 1987).  For a summary see also Auletta et al. (2009, Sect. 13.8).

  170. 170.

    Von Neumann (1932, pp. 163–71) .

  171. 171.

    Bell (1966).

  172. 172.

    Bell (1966, 1971).

  173. 173.

    Gleason (1957).  See also Landsman (2017, Sects. 2.7–2.8 and 4.4),  Auletta (2000, Sect. 11.5).

  174. 174.

    Bell (1966).

  175. 175.

    Auletta (2000, Sect. 32.3), Auletta et al. (2009, Sect. 16.4.1).

  176. 176.

    Kochen and Specker (1965).  See also Pitowsky (1989),  Auletta and Wang (2014, Sect. 10.7), Landsman (2017, Sect. 6.1) .

  177. 177.

    De Morgan (1847) .

  178. 178.

    See also Bub (1989) .

  179. 179.

    Whitehead (1925).

  180. 180.

    Bell (1964).

  181. 181.

    Auletta (2000, pp. 549–50).

  182. 182.

    Conway and Kochen (2006) .

  183. 183.

    I have, also in collaboration with other scholars, dealt several times with these problems (Auletta 2000, pp. 589–91; Auletta et al. 2009, Sect. 16.4.2; Auletta and Wang 2014, Sect. 10.4).

  184. 184.

    Clauser et al. (1969).  The authors used for the first time a stochastic HV theory and not a deterministic one as in the case of Bell’s previous paper. The formulation that I have reported here is slightly different relative to that of their original paper and is due to a later paper of Bell (1971).

  185. 185.

    The reference paper is Braunstein et al. (1992).

  186. 186.

    I invite the reader who likes to know more about these experiments to consult (Auletta 2000, Chap. 35) and literature quoted there. With the language of category theory, we have now an equaliser of quantum theory and experiment (Spivak 2013, Sect. 2.5.3).

  187. 187.

    Aspect et al. (1982) .

  188. 188.

    Santos (1991) .

  189. 189.

    Among the first reported experiments I quote (Shih and Alley 1988; Ou and Mandel 1988) .

  190. 190.

    Marshall et al. (1983), Garuccio and Selleri (1984), Marshall and Santos (1985), Ferrero et al. (1990) .

  191. 191.

    Żukowski et al. (1993).  See also Auletta et al. (2009, Sect. 16.6).

  192. 192.

    Braunstein et al. (1992).

  193. 193.

    Shimony (1983) .

  194. 194.

    This is why to say that entanglement is an exclusive and discriminating connection among particles, as unfortunately is written in Maudlin (1994, p. 23),  is a mistake.

  195. 195.

    First proposed in Bennett and Wiesner (1992), Bennett et al. (1993).  See also Auletta and Wang (2014, Sect. 11.5).

  196. 196.

    Bouwmeester et al. (1997), Furusawa et al. (1998).

  197. 197.

    Horodecki et al. (2005), Cavalcanti et al. (2011) .

  198. 198.

    Cerf and Adami (1997) .

  199. 199.

    Wiesner (1983).

  200. 200.

    Bennett and Brassard (1984) .

  201. 201.

    Battail (2014, p. 15) .

  202. 202.

    See Abramsky and Coecke (2009) .

  203. 203.

    As pointed out in Timpson (2013, Sects. 3.7 and 4.1).

  204. 204.

    Eberhard (1978).  See also Auletta (2000, Sect. 36.5), Auletta and Wang (2014, Sect. 10.6).

  205. 205.

    The original paper is Popescu and Rohrlich (1994).  A summary of this subject can be found in Auletta and Wang (2014, Sect. 12.2).

  206. 206.

    Auletta (2011b).

  207. 207.

    Pawłowski and Scarani (2016) .

  208. 208.

    Tsirelson (1980).

  209. 209.

    Masanes et al. (2006) .

  210. 210.

    Formulated in Pawłowski et al. (2009).  See also Pawłowski and Scarani (2016) .

  211. 211.

    Another way to consider the problem is that hyper-correlations would violate the uncertainty relations (Oppenheim and Wehner 2010) .

  212. 212.

    ‘T Hooft (2016, p. 32) .

  213. 213.

    Pawłowski and Scarani (2016) .

  214. 214.

    As pointed out in Auletta (2011b).

  215. 215.

    Wiesner (1983).

  216. 216.

    See the summary in Nielsen and Chuang (2000, Sect. 12.5.1).

  217. 217.

    As pointed out in Auletta (2011a, Chap. 2).

  218. 218.

    The connection between network of entangled systems and non-locality has been explored in Cavalcanti et al. (2011).

  219. 219.

    Greenberger et al. (1989, 1990).    See also Auletta et al. (2009, Sect. 16.7.2).

  220. 220.

    As shown in Krenn and Zeilinger (1996) .

  221. 221.

    As proposed in Aravind (1997).

  222. 222.

    The reference paper is Auletta et al. (2008). 

  223. 223.

    Aristotle Phys. (1950, I, 7–9) .

  224. 224.

    I think that the notion of Quasi-gegenstand (almost object) introduced by Carnap aims at both types and type–tokens, since it concerns general objects but also some individual ones (Carnap 1928, Sect. 27). Armstrong has supported a theory of universals (Armstrong 1978). In Armstrong (1983, pp. 100–101) he introduces the notion of quasi-universal that perhaps expresses the same concept of type–token here. See also Margenau (1950, Sect. 15.4) .

  225. 225.

    ‘T Hooft (2016, pp. 8–9). Superposition states are called templates, which corresponds somehow to the notion of type.

  226. 226.

    ‘T Hooft (2016, p. 44) .

  227. 227.

    The author seems aware of this problem (‘T Hooft 2016, pp. 51–54) .

  228. 228.

    Collins (2010) .

  229. 229.

    Auletta et al. (2008). 

  230. 230.

    Boltzmann (1896, 1898).  On this subject see Auletta (2011a, Chap. 25).

  231. 231.

    Born (1949, p. 44) .

  232. 232.

    Aristotle Phys. (1950, II, 3).  For deepening these issues see Anagnostopoulos (2009) .

  233. 233.

    It could be said that this insight was originally due to the Italian physicist Franco Selleri (1936–2013) when he affirmed that quantum waves can have physical effects although deprived of momentum and energy, i.e. of dynamical characters, what hints implicitly to a kind of causal constraint (Selleri 1969). Unfortunately, in the following Selleri was not always consequent with this position and searched for an empty wave as a kind of localised object (Sect. 3.3.4), loosing in this way the notion of causal constraint that was implicit in his former point of view.

  234. 234.

    See Pasnau (2004), Torcal (2013) .

  235. 235.

    As I have recalled in Auletta (2011a, Sect. 11.1.2; 2011c, Sect. 3.3.7).

  236. 236.

    In fact, there is currently a flourishing of Aristotelian and neo-Aristotelian studies in philosophy.

  237. 237.

    As pointed out in Auletta (2008, 2013), Stanzione (2013) .

  238. 238.

    As remarked in Peirce (1902). Unfortunately, here and elsewhere Peirce speaks of final causes and not of formal ones.

  239. 239.

    On network theory I recommend (Barabási 2002; Barrat et al. 2008) .

  240. 240.

    On the subject see Edelman and Gally (2001).  See also Auletta (2011a, Sect. 8.2.5)   and literature quoted there.

  241. 241.

    I have stressed this in Auletta (2011c, Sect. 3.2.5). See also Auletta and Torcal (2011) .

  242. 242.

    On this see D’Ariano et al. (2017, Sect. 5.1) .

  243. 243.

    Born (1949, Chap. 2) .

  244. 244.

    Born (1949, Chaps. 3–4, 9) .

  245. 245.

    Laplace (1825) .

  246. 246.

    Baumgarten (1739), Kant (1763) . For an examination of the problem see also Auletta (2004a), Auletta (2006a).

  247. 247.

    Aristotle (1950, 201a 10–19) .

  248. 248.

    See Auletta (2011a, Sects. 8.2.1–8.2.4).

  249. 249.

    Whitehead (1929, pp. 43–46 and 61).  See also Epperson and Zafiris (2013, Chap. 4) .

  250. 250.

    Bell (1976, 1981).  See also Dieks (1994) .

  251. 251.

    Shimony (1993):  see the index of the volumes.

  252. 252.

    Zurek (2013).

  253. 253.

    As reported in Heisenberg (1969, Chap. 5) .

  254. 254.

    Bridgman (1927, p. 5).

  255. 255.

    Bridgman (1927, p. 25, 28).

  256. 256.

    Bridgman (1927, p. 12).

  257. 257.

    Bridgman (1927, pp. 22–23).

  258. 258.

    Heisenberg (1927) .

  259. 259.

    Bridgman (1949).

  260. 260.

    Einstein (1949b, p. 679) .

  261. 261.

    Heisenberg (1927) .

  262. 262.

    Heisenberg (1958, Chap. 3).  In my previous work I was too negative on this point although the distinction between possibility and potentiality was already pointed out (Auletta 2000, Sect. 29.2.2).

  263. 263.

    See also Auletta and Tarozzi (2004, pp. 1680–81) .

  264. 264.

    It seems that W. Pauli somehow supported a view in this sense (Home and Whitaker 2007, p. 63).

  265. 265.

    Shimony, who is supportive of the notion of potentiality, reminds us that H. Margenau had already used (in 1949) the notion of “latency” (Margenau 1950, Sect. 8.2; Shimony 1981) .

  266. 266.

    Heisenberg (1958, pp. 54–55; see also pp. 137–38) .

  267. 267.

    See also Van Fraassen (1991).

  268. 268.

    Heisenberg (1958, p. 142) .

  269. 269.

    As pointed out in Born (1949, Chaps. 6–7) .

  270. 270.

    Deutsch (2011, Chap. 12) .

  271. 271.

    An operationalist standpoint in this sense has been supported for the first time in Poincaré (1905, Chap. 3). In particular, he tells us that “to localise an object means to represent the movements needed for reaching it” (Poincaré 1905, p. 67).

  272. 272.

    As reported in Renninger (1960).

References

  • Abramsly, S., and B. Coecke. 2009. Categorial Quantum Mechanics. http://www.indiana.edu/iulg/qliqc/HQL_fin.pdf

  • Adler, S.L. 2004. Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Aharonov, Y. and D. Bohm. 1959. Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review 115: 485–91; Report in [Shapere/Wilczek 1989, 104–110].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Anagnostopoulos, G. (ed.). 2009. A Companion to Aristotle. Malden: Wiley-Blackwell.

    Google Scholar 

  • Araki, H., and E.H. Lieb. 1970. Entropy Inequalities. Communications in Mathematical Physics 18: 160–70.

    Article  ADS  MathSciNet  Google Scholar 

  • Aravind, P.K. 1997. Borromean Entanglement of the GHZ State. in [Cohen et al. 1997, 53–59].

    Chapter  Google Scholar 

  • Aristotle. 1950. Physica. Oxford: Clarendon; Also in [Aristotle Op., 184–267].

    Google Scholar 

  • Armstrong, D.M. 1978. A Theory of Universals. Cambridge: Cambridge University Press.

    Google Scholar 

  • Armstrong, D.M. 1983. What is a Law of Nature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Aspect, A., J. Dalibard, and G. Roger. 1982. Experimental Tests of Bell’s Inequalities. Physical Review Letters 49: 1804–807.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, G., and S.-Y. Wang. 2014. Quantum Mechanics for Thinkers. Singapore: Pan Stanford Publication. https://doi.org/10.4032/9789814411721.

  • Auletta, G., G. Ellis and L. Jaeger. 2008. Top-Down Causation by Information Control: From a Philosophical Problem to a Scientific Research Program. Journal of the Royal Society: Interface 5: 1159–72. https://doi.org/10.1098/rsif.2008.0018

    Article  Google Scholar 

  • Auletta, G., M. Fortunato, and G. Parisi. 2009. Quantum Mechanics. Cambridge: Cambridge University Press; Revised paperback ed. 2013.

    Google Scholar 

  • Auletta, G. 1994. Determinismo e Contingenza. Napoli, Morano: Saggio sulla filosofia leibniziana delle modalità.

    Google Scholar 

  • Auletta, G. 2000. Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific; Revised ed. 2001.

    Google Scholar 

  • Auletta, G. 2004a. Critical Examination of the Conceptual Foundations of Classical Mechanics in the Light of Quantum Physics. Epistemologia 27: 55–82.

    Google Scholar 

  • Auletta, S. 2004b. Interpretazioni Soggettivistiche Della Misurazione in Meccanica Quantistica. Teorie e modelli 9: 43–61.

    Google Scholar 

  • Auletta, G. 2006a. The Ontology Suggested by Quantum Mechanics. In Topics on General and Formal Ontology, ed. P. Valore, 161–79. Monza: Polimetrica International Scientific Publisher.

    Google Scholar 

  • Auletta, G. 2006b. The Problem of Information. in [Auletta 2006c, 109–127].

    Google Scholar 

  • Auletta, G. (ed.). 2006c. The Controversial Relations Between Science and Philosophy: A Critical Assessment. Vatican City: Libreria Editrice Vaticana.

    Google Scholar 

  • Auletta, G. 2007. Il dibattito tra Einstein, Bohr e Schrödinger: Causalità, determinazione e azione a distanza. Il Protagora 9: 181–98.

    Google Scholar 

  • Auletta, G. 2008. How Many Causes Are There?\(\rm 21^{mo}\). secolo. Scienza e tecnologia 5: 41–48.

    Google Scholar 

  • Auletta, G. 2009. Quantum Mechanics and Contingency. Filozofia Przyrody i Nauk Przyrodniczych 1: 7–16.

    Google Scholar 

  • Auletta, G. 2011a. Cognitive Biology: Dealing with Information from Bacteria to Minds. Oxford: Oxford University Press.

    Google Scholar 

  • Auletta, G. 2011b. Correlations and Hyper-Correlations. Journal of Modern Physics 2: 958–61. https://doi.org/10.4236/jmp.2011.29114, http://www.scirp.org/journal/PaperInformation.aspx?paperID=7135.

    Article  ADS  Google Scholar 

  • Auletta, G. 2011c. (in collaboration with I. Colagè, P. D’ambrosio, and L. Torcal). Integrated Cognitive Strategies in a Changing World. Rome: G and B Press.

    Google Scholar 

  • Auletta, G. 2013. La sfida del darwinismo e la causalità nel mondo naturale. in [Auletta/Pons 2013, 123–37].

    Google Scholar 

  • Auletta, G., and S. Pons Domenech (eds.). 2013. Si può parlare oggi di una finalità dell’evoluzione? Riessioni loso che e teologiche alla luce della scienza contemporanea. Rome: G and B Press.

    Google Scholar 

  • Auletta, G., and G. Tarozzi. 2004. On the Physical Reality of Quantum Waves. Foundations of Physics 34: 1675–94.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Auletta, G. and L. Torcal. 2011. From Wave–Particle to Features–Event Complementarity. International Journal of Theoretical Physics 50: 3654–68. https://doi.org/10.1007/s10773-011-0833-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ballentine, L.E. 1970. The Statistical Interpretation of Quantum Mechanics. Review of Modern Physics 42: 358–81.

    Article  ADS  MATH  Google Scholar 

  • Barabási, A.-L. 2002. Linked: How Everything is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. New York: Penguin.

    Google Scholar 

  • Barnett, S.M., and S.J.D. Phoenix. 1989. Entropy as a Measure of Quantum Optical Correlation. Physical Review A40: 2404–409.

    Article  ADS  MathSciNet  Google Scholar 

  • Barnett, S.M., and S.J.D. Phoenix. 1991. Information Theory, Squeezing, and State Correlations. Physical Review A44: 535–45.

    Google Scholar 

  • Barrat, A., M. Barthélemy, and A. Vespignani. 2008. Dynamical Processes on Complex Networks. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barrow, J.D., and F.J. Tipler. 1986. The Anthropic Cosmological Principle. Oxford: Clarendon P.

    Google Scholar 

  • Battail, G. 2014. Information and Life. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Baumgarten, A.G. 1739. Metaphysica, 7th ed. Halle 1779; rep. Hildesheim–New York, Georg Olms, 1982.

    Google Scholar 

  • Bekenstein, J.D. 2003. Information in the Holographic Universe. Scientific American 2892: 58–65. https://doi.org/10.1038/scientificamerican0803-58

    Article  MathSciNet  Google Scholar 

  • Bell, J.S. 1964. On Einstein Podolsky Rosen Paradox. Physics 1: 195–200; Report in [Bell 1987, 14–21].

    Article  MathSciNet  Google Scholar 

  • Bell, J.S. 1987. Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bell, J.S. 1966. On the Problem of Hidden Variables in Quantum Mechanics. Review of Modern Physics 38: 447–52; Report in [Bell 1987, 1–13].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bell, J.S. 1971. Introduction to the Hidden-Variable Question. In [D’Espagnat 1971, 171–81]; Report in [Bell 1987, 29–39].

    Google Scholar 

  • Bell, J.S. 1976. The Theory of Local Beables. Epistemological Letters; Report in [Bell 1987, 52–62].

    Google Scholar 

  • Bell, J.S. 1981. Quantum Mechanics for Cosmologists. In Quantum Gravity 2, ed. C.J. Isham, R. Penrose, and D. Sciama. Oxford: Clarendon; Report in [Bell 1987, 117–38].

    Google Scholar 

  • Bell, J.S. 1990. Against Measurement. Physics World 3 (8): 33–40.

    Article  Google Scholar 

  • Bennett, C.H., and G. Brassard. 1984. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings IEEE International Conference on Computer Systems, 175–79. New York: IEEE.

    Google Scholar 

  • Bennett, C.H., and S.J. Wiesner. 1992. Communication via One- and Two-Particle Operators on EPR States. Physical Review Letters 69: 2881–84.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W.K. Wootters. 1993. Teleporting an Unknown Quantum State via Dual Classical and EPR Channels. Physical Review Letters 70: 1895–99.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H. 1973. Logical Reversibility of Computation. IBM Journal of Research and Development 17: 525–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Berkeley, G. 1710. A Treatise Concerning the Principles of Human Knowledge. Dublin, 1710: London, 1734; Penguin 1988.

    Google Scholar 

  • Berry, M.V. 1984. Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London A392: 45–57; Report in [Shapere/Wilczek 1989, 124–36].

    Google Scholar 

  • Berry, M.V. 1987. The Adiabatic Phase and the Pancharatnam’s Phase for Polarized Light. Journal of Modern Optics 34: 1401–407; Report in [Shapere/Wilczek 1989, 67–73].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bialynicki-Birula, I., and J. Mycielski. 1976. Nonlinear Wave Mechanics. Annals of Physics 100: 62–93.

    Article  ADS  MathSciNet  Google Scholar 

  • Bird, A. 2007. Nature’s Metaphysics: Laws and Properties. Oxford: Oxford University Press.

    Google Scholar 

  • Bohm, D. 1952. A Suggested Interpretation of the Quantum Theory in Terms of ’Hidden Variables. Physical Review 85: 166–93; Report in [Wheeler/Zurek 1983, 369–96].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bohm, D. 1980. Wholeness and the Implicate Order. London: Routledge.

    Google Scholar 

  • Bohm, D., and B.J. Hiley. 1993. The Undivided Universe: An Ontological Interpretation of Quantum Theory. London: Routledge.

    Google Scholar 

  • Bohr, N. 1928. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 121: 580–90; Report in [Bohr CW, VI, 148–58].

    Google Scholar 

  • Bohr, N. 1935a. Quantum Mechanics and Physical Reality. Nature 136: 65; Report in [Bohr CW, VII, 290].

    Article  ADS  MATH  Google Scholar 

  • Bohr, N. 1935b. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 48: 696–702; Report in [Bohr CW, VII, 292–96].

    Google Scholar 

  • Bohr, N. 1948. On the Notions of Causality and Complementarity. Dialectica 1: 312–19; Report in [Bohr CW, VII, 325–37].

    Google Scholar 

  • Bohr, N. 1949. Discussion With Einstein on Epistemological Problems in Atomic Physics. in [Schilpp 1949, 201–241].

    Google Scholar 

  • Boltzmann, L. 1896. Vorlesungen über Gastheorie I. Leipzig: J. A. Barth.

    Google Scholar 

  • Boltzmann, L. 1898. Vorlesungen über Gastheorie II. Leipzig: J. A. Barth.

    Google Scholar 

  • Born, M. 1949. Natural Philosophy of Chance and Cause. Oxford: Clarendon.

    Google Scholar 

  • Bouwmeester, D., J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger. 1997. Experimental Quantum Teleportation. Nature 390: 575–79.

    Article  ADS  MATH  Google Scholar 

  • Braginsky, V.B., and F.Y. Khalili. 1992. Quantum Measurement. Cambridge: Cambridge University Press.

    Google Scholar 

  • Braunstein, S.L., A. Mann, and M. Revzen. 1992. Maximal Violation of Bell Inequalities for Mixed States. Physical Review Letters 68: 3259–61.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bricmont, J. 2016. Making Sense of Quantum Mechanics. Berlin: Springer.

    Google Scholar 

  • Bridgman, P.W. 1927. The Logic Of Modern Physics. New York: McMillan.

    Google Scholar 

  • Bridgman, P.W. 1949. Einstein’s Theories and the Operational Point of View. in [Schilpp 1949, 333–54].

    Google Scholar 

  • Brillouin, L. 1962. Science and Information Theory. New York: Academic.

    Google Scholar 

  • Brukner, C., and A. Zeilinger. 1999. Operationally Invariant Information in Quantum Measurements. Physical Review Letters 83: 3354–57.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Brukner, C., and A. Zeilinger. 2001. Conceptual Inadequacy of the Shannon Information in Quantum Measurements. Physical Review A 63: 022113.

    Google Scholar 

  • Brukner, C. and A. Zeilinger. 2005. Quantum Physics as a Science of Information. in [Elitzur et al. 2005, 47–61].

    Google Scholar 

  • Brune, M., E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, and S. Haroche. 1996. Observing the Progressive Decoherence of the ‘Meter’ in a Quantum Measurement. Physical Review Letters 77: 4887–90.

    Article  ADS  Google Scholar 

  • Bub, J. 1989. On Bohr’s Response to EPR: A Quantum Logical Analysis. Foundations of Physics 19: 793–805.

    Article  ADS  MathSciNet  Google Scholar 

  • Carnap, R. 1928. Der Logische Aufbau der Welt. Meiner: Hamburg.

    Google Scholar 

  • Cavalcanti, D., M.L. Almeida, V. Scarani and A. Acín. 2011. Quantum Networks Reveal Quantum Nonlocality. Nature Communications 2: 184. https://doi.org/10.1038/ncomms1193

  • Cerf, N.J., and C. Adami. 1997. Negative Entropy and Information in Quantum Mechanics. Physical Review Letters 79: 5194–97.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chalmers, D.J. 1996. The Conscious Mind. In Search of a Fundamental Theory. Oxford: Oxford University Press.

    Google Scholar 

  • Clauser, J.F., M.A. Horne, A. Shimony and R.A. Holt. 1969. Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters 23: 880–84; Report in [Wheeler/Zurek 1983, 409–413].

    Article  ADS  MATH  Google Scholar 

  • Cohen-Tannoudji, G. 1991. Les constantes universelles. Paris: Hachette.

    Google Scholar 

  • Cohen, R.S., M.A. Horne, and J. Stachel (eds.). 1997. Potentiality, Entanglement and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony. Dordrecht: Kluwer.

    Google Scholar 

  • Collins, H. 2010. Tacit and Explicit Knowledge. Chicago: University of Chicago Press.

    Google Scholar 

  • Conway, J., and S. Kochen. 2006. The Free Will Theorem. Foundations of Physics 36: 1441–73. https://doi.org/10.1007/s10701-006-9068-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Conway, J., and S. Kochen. 2009. The Strong Free Will Theorem. Notices of the AMS 56 (2): 226–32.

    Google Scholar 

  • Croca, J.R. 1987. Neutron Interferometry Can Prove (or Refute) the Existence of de Broglie’s Waves. Foundations of Physics 17: 971–80.

    Article  ADS  Google Scholar 

  • D’Ariano, M., G. Chiribella, and P. Perinotti. 2017. Quantum Theory from First Principles: An informational approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • de Broglie, L. 1956. Une tentative d’Interpretation Causale et Non-linéaire de la Mécanique ondulatoire. Paris: Gauthier-Villars.

    Google Scholar 

  • de Laplace, P.S. 1796. Exposition du système du monde. Paris: Fayard.

    Google Scholar 

  • de Laplace, P.-S. 1825. Essai philosophique sur les probabilités, 5th ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • De Morgan, A. 1847. Formal Logic or the Calculus of Inference, Necessary and Probable. London: Taylor and Walton; Chicago.

    Google Scholar 

  • de Muynck, W.M. 2002. Foundations of Quantum Mechanics, an Empiricist Approach. New York: Kluwer Academic Publishers.

    Google Scholar 

  • D’Espagnat, Bernard (ed.). 1971. Foundations of Quantum Mechanics. New York: Academic.

    Google Scholar 

  • D’Espagnat, B. (ed.). 1995. Veiled Reality. Reading: Addison/Wesley.

    Google Scholar 

  • Deutsch, D. 1966. Comment on Lockwood. British Journal for Philosophy of Science 47: 222–28.

    Article  MathSciNet  Google Scholar 

  • Deutsch, D. 1983. Uncertainty in Quantum Mechanics. Physical Review Letters 50: 631–33.

    Article  ADS  MathSciNet  Google Scholar 

  • Deutsch, D. 1997. The Fabric of Reality: the Science of Parallel Universes and Its Implications. London: Penguin Books.

    Google Scholar 

  • Deutsch, D. 2010. Apart from Universes. in [Saunders et al. 2010, 542–52].

    Chapter  Google Scholar 

  • Deutsch, D. 2011. The Beginning of Infinity: Explanations that Transform the World. London: Penguin Books.

    Google Scholar 

  • DeWitt, B.S. 1970. Quantum Mechanics and Reality. Physics Today 23.9: 30–40; Report in [Dewitt/Graham 1973, 155–65].

    Google Scholar 

  • DeWitt, B.S. 1971. The Many-Universes Interpretation of Quantum Mechanics. in [D’Espagnat 1971]; Report in [Dewitt/Graham 1973, 167–218].

    Chapter  Google Scholar 

  • Dieks, D. 1994. Modal Interpretation of Quantum Mechanics, Measurements, and Macroscopic Behavior. Physical Review A49: 2290–299.

    Article  ADS  Google Scholar 

  • Eberhard, P.H. 1978. Bell’s Theorem and the Different Concepts of Locality. Nuovo Cimento 46B: 392–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Eddington, A.S. 1934. On the Method of Theoretical Physics. Philosophy of Science 1: 163–69; Eng. Tr. of [Einstein 1930].

    Article  Google Scholar 

  • Einstein, A. 1949a. Autobiographisches. in [Schilpp 1949, 2–94].

    Google Scholar 

  • Einstein, A. 1949b. Remarks Concerning the Essays Brought Together in This Co-operative Volume. in [Schilpp 1949, 665–88].

    Google Scholar 

  • Eddington, A.S. 1939. Philosophy of Physical Science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Edelman, G.M., and J.A. Gally. 2001. Degeneracy and Complexity in Biological Systems. Proceedings of the National Academy of Sciences USA 98: 13763–68.

    Article  ADS  Google Scholar 

  • Einstein, A., B. Podolsky and N. Rosen. 1935. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review 47: 777-80; Report in [Wheeler/Zurek 1983, 138–41].

    Article  ADS  MATH  Google Scholar 

  • Einstein, A. 1918. Prinzipien der Forschung; Report in [Einstein 1993, 107–113].

    Google Scholar 

  • Einstein, A. 1930. Zur Methodik der Theoretischen Physik; Report in [Einstein 1993, 113–19].

    Google Scholar 

  • Elby, A., and J. Bub. 1994. Triorthogonal Uniqueness Theorem and its Relevance to the Interpretation of Quantum Mechanics. Physical Review A49: 4213–16.

    Article  ADS  MathSciNet  Google Scholar 

  • Englert, B.-G., M.O. Scully, and H. Walther. 1994. The Duality in Matter and Light. Scientific American 271 (6): 56–61.

    Article  Google Scholar 

  • Epperson, M., and E. Zafiris. 2013. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and The Philosophy of Nature. Lexington Books.

    Google Scholar 

  • Everett, H. III. 1957. Relative State’ Formulation of Quantum Mechanics. Review of Modern Physics 29: 454–62. 1; Report in [Dewitt/Graham 1973, 141–49].

    Google Scholar 

  • Everett, H.III. 1973. The Theory of the Universal Wave Function. In: [Dewitt/Graham 1973, 141–49].

    Google Scholar 

  • Fano, V. (ed.). 2014. Gino Tarozzi Philosopher of Physics: Studies in the Philosophy of Entanglement in his 60th Birthday. Milano: Franco Angeli.

    Google Scholar 

  • Ferrero, M., T.W. Marshall, and E. Santos. 1990. Bell’s Theorem: Local Realism versus Quantum Mechanics. American Journal of Physics 58: 683–88.

    Article  ADS  Google Scholar 

  • Fine, A. 1981. Einstein’s Critique of Quantum Theory: The Roots and Significance of EPR. In After Einstein, ed. P. Barker, and C.G. Shugart, 147–59. Memphis State University Press; Report in [Fine 1986, 26–39].

    Google Scholar 

  • Furusawa, A., J.L. SøRensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, and E.S. Polzik. 1998. Unconditional Quantum Teleportation. Science 282: 706–709.

    Article  ADS  Google Scholar 

  • Garuccio, A., and F. Selleri. 1984. Enhanced Photon Detection in EPR Type Experiments. Physics Letters 103A: 99–103.

    Article  ADS  MathSciNet  Google Scholar 

  • Garuccio, A., V. Rapisarda, and J.-P. Vigier. 1982. Next Experimental Set-Up for the Detection of de Broglie Waves. Physics Letters 90A: 17–19.

    Article  ADS  Google Scholar 

  • Geroch, R. 1978. General Relativity From A to B. Chicago: University of Chicago Press.

    Google Scholar 

  • Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H.D. Zeh (eds.). 1996. Decoherence and the Appearance of a Classical World in Quantum Theory. Berlin: Springer.

    Google Scholar 

  • Gleason, A.M. 1957. Measures on the Closed Subspaces of a Hilbert Space. Journal of Mathematics and Mechanics 6: 885–93; Report in [Hooker 1975, 123–33].

    Article  MathSciNet  MATH  Google Scholar 

  • Graham, N. 1973. The Measurement of Relative Frequency. in [Dewitt/Graham 1973, 229–53].

    Google Scholar 

  • Greenberger, D.M., M.A. Horne and A. Zeilinger. 1989. Going Beyond Bell’s Theorem. in [Kafatos 1989, 69–72].

    Google Scholar 

  • Greenberger, D.M., M.A. Horne, A. Shimony, and A. Zeilinger. 1990. Bell’s Theorem Without Inequalities. American Journal of Physics 58: 1131–43.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Griffiths, R.B. 1984. Consistent Histories and the Interpretation of Quantum Mechanics. Journal of Statistical Physics 36: 219–72.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Halliwell, J.J. 1993. Quantum-Mechanical Histories and the Uncertainty Principle: Information-Theoretic Inequalities. Physical Review D 48: 2739–52.

    Article  ADS  MathSciNet  Google Scholar 

  • Halliwell, J.J. 2010. Macroscopic Superpositions, Decoherent Histories, and the Emergence of Hydrodynamic Behavior. in [Saunders et al. 2010, 99–117].

    Google Scholar 

  • Hardy, L. 1992. On the Existence of Empty Waves in Quantum Theory. Physics Letters 167A: 11–16.

    Article  ADS  MathSciNet  Google Scholar 

  • Harrigan, N. and R.W. Spekkens. 2010. Einstein, Incompleteness, and the Epistemic View of Quantum States. Foundations of Physics 40: 125–57. https://doi.org/10.1007/s10701-009-9347-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hartle, J.B., and S.W. Hawking. 1983. Wave Function of the Universe. Physical Review D 28: 2960–75.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43: 172–98; Report in [Heisenberg GW, A.I, 478–504].

    Google Scholar 

  • Heisenberg, W. 1952. Philosophic Problems of Nuclear Science. Woodbridge (Connecticut): Ox Bow Press.

    Google Scholar 

  • Heisenberg, W. 1958. Physics and Philosophy. New York: Harper.

    Google Scholar 

  • Heisenberg, W. 1969. Der Teil und Das Ganze. München: Piper.

    Google Scholar 

  • Hempel, C.G. 1953. Methods of Concept Formation Science. Chicago: University of Chicago Press. (NA)

    Google Scholar 

  • Hiley, B.J. 1999. Active Information and Teleportation. In Epistemological and Experimental Perspectives on Quantum Physics, ed. Greenberger, et al., 113–26. Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Holevo, A.S. 1998. The Capacity of Quantum Channel with General Signal States. IEEE Transactions on Information Theory 44: 269–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Holland, P.R. 1993. The Quantum Theory of Motion. Cambridge: Cambridge University Press.

    Google Scholar 

  • Home, D., and M.A.B. Whitaker. 2007. Einstein’s Struggles with Quantum Theory: A Reappraisal. Berlin: Springer.

    Google Scholar 

  • Horodecki, M., J. Oppenheim, and A. Winter. 2005. Partial Quantum Information. Nature 436: 673–76.

    Article  ADS  Google Scholar 

  • Howard, D. 1992. Einstein and Eindeutigkeit: A Neglected Theme in the Philosophical Background to General Relativity. In Studies in the History of General Relativity, ed. J. Eisenstaedt, and A.J. Kox. Birkhäuser: Bioston.

    Google Scholar 

  • Huang, K. 1963. Statistical Mechanics, 2nd ed. New York: Wiley.

    Google Scholar 

  • Husserl, E. 1931. Méditations CartéSiennes. Paris:

    Google Scholar 

  • Jammer, M. 1974. The Philosophy of Quantum Mechanics. The Interpretation of Quantum Mechanics in Historical Perspective. New York: Wiley.

    Google Scholar 

  • Joos, E., and H.D. Zeh. 1985. The Emergence of Classical Properties Through Interaction with the Environment. Zeitschrift für Physik B59: 223–43.

    Article  ADS  Google Scholar 

  • Kant, I. 1763. Der einzige mögliche Beweisgrund zu einer Demonstration des Daseins Gottes. in [Kant A, II, 63–164].

    Google Scholar 

  • Kant, I. 1787. Kritik der reinen Vernunft, 2nd ed. 1787: III v. of [Kant A].

    Google Scholar 

  • Khinchin, A.I. 1957. Mathematical Foundations of Information Theory (Engl. Tr.), New York: Dover.

    Google Scholar 

  • Kochen, S., and E. Specker. 1965. Logical Structures Arising in Quantum Theory. In Theory of Models, ed. H.L. Addison, and A. Tarsky. Amsterdam, North-Holland. Report in [Hooker 1975, 263–76].

    Chapter  Google Scholar 

  • Krenn, G., and A. Zeilinger. 1996. Entangled Entanglement. Physical Review A54: 1793–97.

    Google Scholar 

  • Landsman, K. 2017. Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Berlin: Springer.

    Google Scholar 

  • Laughlin, R.B. 2005. A Different Universe (Reinventing Physics from the Bottom Down). New York: Basic Books.

    Google Scholar 

  • Leibniz, G.W. 1686. Discours de Metaphysique. in [Leibniz PS, IV, 427–63].

    Google Scholar 

  • Leibniz, G.W. 1978. Philosophische Schriften (Ed. Gerhardt), Halle, 1875. rep. Olms: Hildesheim.

    Google Scholar 

  • Leibniz, G.W. 1710. Essais de Théodicée; In [Leibniz PS, VI, 21–436]

    Google Scholar 

  • Leibniz, G.W. 2019. Philosophische Schriften (Ed. Gerhardt), Halle, 1875; Report Olms: Hildesheim.

    Google Scholar 

  • Lewis, D. 1986. On the Plurality of Worlds. Oxford: Blackwell.

    Google Scholar 

  • Lieb, E.H. 1975. Some Convexity and Subadditivity Properties of Entropy. Bulletin of the American Mathematical Society 81: 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindblad, G. 1973. Entropy, Information and Quantum Measurement. Communications in Mathematical Physics 33: 305–322.

    Article  ADS  MathSciNet  Google Scholar 

  • Lindblad, G. 1983. Non-Equilibrium Entropy and Irreversibility. Dordrecht: Reidel.

    Google Scholar 

  • Ling, S., and C. Xing. 2004. Coding Theory: A First Course. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lockwood, M. 1966. Many Minds Interpretations of Quantum Mechanics. British Journal for Philosophy of Science 47: 159–88.

    Google Scholar 

  • London, F., and E. Bauer. 1939. La Théorie de L’observation en Mécanique Quantique. Paris: Hermann; Eng. Trans. in [Wheeler/Zurek 1983, 217–59].

    Google Scholar 

  • Lüders, G. 1951. Über die Zustandsänderung durch Meßprozeß. Annalen der Physik 8: 322–28.

    Google Scholar 

  • Mana P.G.L. 2004. Consistency of the Shannon entropy in Quantum Experiments. Physical Review A69: 062108. https://doi.org/10.1103/PhysRevA.69.062108

  • Margenau, H. 1950. The Nature of Physical Reality: A Philosophy of Modern Physics. New York: McGraw-Hill, 1950; Woodbridge, Conn.: Ox Bow Press.

    Google Scholar 

  • Marshall, T.W., and E. Santos. 1985. Local Realist Model for the Coincidence Rates in Atomic-Cascade Experiments. Physics Letters 107A: 164–68.

    Article  ADS  MathSciNet  Google Scholar 

  • Marshall, T.W., E. Santos, and F. Selleri. 1983. Local Realism Has not Been Refuted by Atomic Cascade Experiments. Physics Letters 98A: 5–9.

    Article  ADS  Google Scholar 

  • Masanes, L., A. Acin, and N. Gisin. 2006. General Properties of Nonsignaling Theories. Physical Review A73: 012112-1–9.

    Google Scholar 

  • Maudlin, T. 1994. Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics. Blackwell.

    Google Scholar 

  • Mehra, J., and H. Rechenberg. 1982. The Historical Development of Quantum Theory. New York: Springer.

    Google Scholar 

  • Mittelstaedt, P., A. Prieur, and R. Schieder. 1987. Unsharp Particle-Wave Duality in a Photon Split-Beam Experiment. Foundations of Physics 17: 891–903.

    Article  ADS  Google Scholar 

  • Monroe, C., D.M. Meekhof, B.E. King, and D.J. Wineland. 1996. A Schrödinger Cat’ Superposition State of an Atom. Science 272: 1131–36.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Munowitz, M. 2005. Knowing: The Nature of Physical Law. Oxford: Oxford University Press.

    Google Scholar 

  • Nagel, E. 1961. The Structure of Science. Harcourt-Brace.

    Google Scholar 

  • Nielsen, M.A., and I.L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.

    Google Scholar 

  • Norsen, T. 2017. Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory. Berlin: Springer.

    Google Scholar 

  • Opera. 1831. (ed. Immanuel Bekker), Berlin, G. Reimerum.

    Google Scholar 

  • Ohya, M., and D. Petz. 1993. Quantum Entropy and its Use. Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Oppenheim, J. and S. Wehner. 2010. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science 330: 1072. https://doi.org/10.1126/science.1192065

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ott, E. 1993. Chaos in Dynamical Systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ou, Z.Y., and L. Mandel. 1988. Violation of Bell’s Inequality and Classical Probability in a Two-Photon Correlation Experiment. Physical Review Letters 61: 50–53.

    Article  ADS  MathSciNet  Google Scholar 

  • Partovi, H.M. 1989. Irreversibility, Reduction and Entropy Increase in Quantum Measurements. Physics Letters 137A: 445–50.

    Article  ADS  MathSciNet  Google Scholar 

  • Pasnau, R. 2004. Form, Substance, and Mechanism. Philosophical Review 113: 31–88.

    Article  Google Scholar 

  • Pawłowski, M., T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M.Z. \(\dot{\rm Z}\)ukowski. 2009. Information Causality as a Physical Principle. Nature 461: 1101–104.

    Article  ADS  Google Scholar 

  • Pawłowski, M. and V. Scarani. 2016. Information Causality. in [Chiribella/Spekkens 2016, 423–38].

    Google Scholar 

  • Paz, J.P., S. Habib, and W.H. Zurek. 1993. Reduction of the Wave Packet: Preferred Observable and Decoherence Time Scale. Physical Review D 47: 488–501.

    Article  ADS  Google Scholar 

  • Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Peirce, C.S. 1877. The Fixation of Belief. Popular Science Monthly 12: 1–15; Report in [Peirce W, III, 242–57].

    Google Scholar 

  • Peirce, C.S. 1891. The Architecture of Theories. Monist 1: 161–76; in [Peirce W, VIII, 98–110].

    Google Scholar 

  • Peirce, C.S. 1898. Reasoning and The Logic of Things: The Cambridge Conferences Lectures of 1898. Manuscript; ed. K. L. Ketner. Cambridge: Harvard University Press.

    Google Scholar 

  • Peirce, C.S. 1902. On Science and Natural Classes. in [Peirce EP, II, 115–32].

    Google Scholar 

  • Peres, A., and W.H. Zurek. 1982. Is Quantum Theory Universally Valid? American Journal of Physics 50: 807–10.

    Article  ADS  Google Scholar 

  • Peshkin, M., and A. Tonomura. 1989. The Aharonov-Bohm Effect. Berlin: Springer.

    Google Scholar 

  • Pitowsky, I. 1989. Quantum Probability-Quantum Logic. Berlin: Springer.

    Google Scholar 

  • Planck, M. 1922. The Origin and Development of the Quantum Theory. Oxford: Clarendon Press.

    Google Scholar 

  • Plesch, M. and V. Buz̆ek. 2010. Efficient Compression of Quantum Information. Physical Review A81: 032317. https://doi.org/10.1103/PhysRevA.81.032317

  • Poincaré, Henri. 1905. La Valeur de la science. Paris: Flammarion.

    Google Scholar 

  • Popescu, S., and D. Rohrlich. 1994. Quantum Nonlocality as an Axiom. Foundations of Physics 24: 379–85.

    Article  ADS  MathSciNet  Google Scholar 

  • Popper, K.R. 1982. Quantum Theory and the Schism in Physics. London: Unwin Hyman Ltd; Routledge.

    Google Scholar 

  • Rees, M. 1999. Just Six Numbers, Weidenfeld and Nicolson; London: Phoenix.

    Google Scholar 

  • Reid, T. 1764. An Inquiry into the Human Mind on the Principles of Common Sense, 1764, 5th ed. Edinburgh: Bell and Co.

    Google Scholar 

  • Renninger, M.K. 1960. Messungen ohne Störung des Meßobjekts. Zeitschrift für Physik 158: 417–21.

    Google Scholar 

  • Rindler, W. 2001. Relativity: Special, General, and Cosmological. Oxford: Oxford University Press.

    Google Scholar 

  • Rovelli, C. 1996. Relational Quantum Mechanics. International Journal of Theoretical Physics 35:1637–78. https://doi.org/10.1007/bf02302261

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rovelli, C. 2005. Relational Quantum Mechanics. in [Elitzur et al. 2005, 113–20].

    Google Scholar 

  • Rozema, L.A., D.H. Mahler, A. Hayat, P.S. Turner and A.M. Steinberg. 2014. Quantum Data Compression of a Qubit Ensemble. Physical Review Letters 113: 160504. https://doi.org/10.1103/PhysRevLett.113.160504

  • Shapere, A., and F. Wilczek (eds.). 1989. Geometric Phases in Physics. Singapore: World Scientic.

    Google Scholar 

  • Santos, E. 1991. Does Quantum Mechanics Violate the Bell Inequalities? Physical Review Letters 66: 1388–90; Errata: 3227.

    Article  ADS  Google Scholar 

  • Saunders, S., J. Barrett, A. Kent, and D. Wallace (eds.). 2010. Many Worlds?. Oxford: Oxford University Press.

    Google Scholar 

  • Schlosshauer, M. 2007. Decoherence and the Quantum-to-Classical Transition. Berlin: Springer.

    Google Scholar 

  • Schrödinger, E. 1935a. Die gegenwärtige Situation in der Quantenmechanick. I–III. Naturwissenschaften 23: 807–12, 823–28, 844–49; Report in [Schröodinger GA, III, 484–501].

    Google Scholar 

  • Schrödinger, E. 1935b. Discussion of Probability Relations Between Separated Systems. Proceedings of the Cambridge Philosophical Society 32: 446–52; Report in [Schröodinger GA, I, 433–39].

    Article  MATH  Google Scholar 

  • Schrödinger, E. 1936. Probability Relations Between Separated Systems. Proceedings of the Cambridge Philosophical Society 31: 555–63; Report in [Schröodinger GA, I, 424–32].

    Google Scholar 

  • Schrödinger, E. 1958. Mind and Matter. Cambridge: Cambridge University Press; Report in [Schrödinger 1992, 91–164].

    Google Scholar 

  • Schrödinger, E. 1992. What is Life? with Mind and Matter and Autobiographical Sketches. Cambridge: Cambridge University Press (enlarged ed. of [?]).

    Google Scholar 

  • Schumacher, B.W. 1990. Information from Quantum Measurements. in [Zurek 1990, 29–37].

    Google Scholar 

  • Schuster, H.G. 1988. Deterministic Chaos: An Introduction, 2nd ed. Weinheim: VCH; 3rd ed. 2005.

    Google Scholar 

  • Scully, M.O., B.-G. Englert, and H. Walther. 1991. Quantum Optical Tests of Complementarity. Nature 351: 111–16.

    Article  ADS  Google Scholar 

  • Selleri, F. 1969. On the Wave Function of Quantum Mechanics. Lettere a Nuovo Cimento 1: 908–910.

    Article  Google Scholar 

  • Serjeant, S. 2010. Observational Cosmology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shafiee, A., F. Safinejad and F. Naqsh. 2006. Information and the Brukner–Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation. Foundations of Physics Letters 19: 1–20. https://doi.org/10.1007/s10702-006-1845-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shannon, C.E. 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27 (379–423): 623–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Shih, Y.H., and C.O. Alley. 1988. New Type of EPR-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion. Physical Review Letters 61: 2921–24.

    Article  ADS  Google Scholar 

  • Shimony, A. 1965. Quantum Physics and the Philosophy of Whitehead. In Philosophy in America, ed. Max Black. London: Allen and Unwin; Report in [Shimony 1993, II, 291–309].

    Google Scholar 

  • Shimony, A. 1981. Réflections sur la philosophy de Bohr, Heisenberg et Schrödinger. Journal de physique 42: 81–95; Eng. Tr. in [SHIMONY 1993, II, 310–22] with the title “Reflections on the Philosophy of Bohr, Heisenberg, and Schrödinger”.

    Google Scholar 

  • Shimony, A. 1983. Controllable and Uncontrollable Non-Locality. In Foundations of Quantum Mechanics in the Light of New Technology, ed. S. Kamefuchi, et al., 225–30. Japan: Physical Society of Japan. Report in [Shimony 1993, II, 130–139].

    Google Scholar 

  • Shimony, A. 1993. Search for a Naturalistic Point of View. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shull, C.G., D.K. Atwood, J. Arthur, and M.A. Horne. 1980. Search For a Nonlinear Variant of the Schrödinger Equation by Neutron Interferometry. Physical Review Letters 44: 765–68.

    Article  ADS  Google Scholar 

  • Smolin, L. 1997. The Life of the Cosmos. Oxford: Oxford University Press.

    Google Scholar 

  • Spinoza, B. 1677. Ethica. Amsterdam; In [Spinoza O, II, 41–308].

    Google Scholar 

  • Spivak, D.I. 2013. Category Theory for Scientists. Cambridge: MIT Press.

    Google Scholar 

  • Stachel, J. 2017. It Ain’t Necessarily So: Interpretations and Misinterpretations of Quantum Theory. in [Kastner et al. 2017, 53–74].

    Google Scholar 

  • Stanzione, M. 2013. Evoluzionismo e teleologia: riconsiderazione storico-teorica del problema. in [Auletta/Pons 2013, 81–104].

    Google Scholar 

  • Stapp, H.P. 1982. Mind, Matter, and Quantum Mechanics. Foundations of Physics 12: 363–99; Report in [Stapp 1993, 81–118].

    Google Scholar 

  • Stapp, H.P. 1993. Mind, Matter, and Quantum Mechanics, 2nd ed, 2004. Berlin: Springer.

    Google Scholar 

  • Tegmark, M., A. Aguirre, M.J. Rees, and F. Wilczek. 2006. Dimensionless Constants, Cosmology, and Other Dark Matters. Physical Review D 73: 023505.

    Google Scholar 

  • ‘T Hooft, G. 2016. The Cellular Automaton Interpretation of Quantum Mechanics. Berlin: Springer.

    Google Scholar 

  • Tegmark, M. 2003. Parallel Universes. Scientific American.

    Article  ADS  Google Scholar 

  • Timpson, C.G. 2013. Quantum Information Theory and the Foundations of Quantum Mechanics. Oxford: Oxford University Press.

    Google Scholar 

  • Torcal, L. 2013. Complessità, direzionalità e finalismo. in [Auletta/Pons 2013, 235–55].

    Google Scholar 

  • Tsirelson, B.S. 1980. Quantum Generalizations of Bell’s Inequality. Letters in Mathematical Physics 4: 93–100.

    Article  ADS  MathSciNet  Google Scholar 

  • van Fraassen, B.C. 1991. Quantum Mechanics. An Empiricist View. Oxford: Clarendon.

    Google Scholar 

  • Vedral, V., M.B. Plenio, M.A. Rippin, and P.L. Knight. 1997. Quantifying Entanglement. Physical Review Letters 78: 2275–79.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    Google Scholar 

  • Wallace, D. 2010. Decoherence and Ontology. In [Saunders et al. 2010, 53–72].

    Google Scholar 

  • Wallace, D. 2012. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford: Oxford University Press.

    Google Scholar 

  • Wang, L.J., X.Y. Zou, and L. Mandel. 1991. Induced Coherence Without Induced Emission. Physical Review A44: 4614–22.

    Article  ADS  Google Scholar 

  • Wehrl, A. 1978. General Properties of Entropy. Review of Modern Physics 50: 221–60.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wheeler, J.A. 1983. Law Without Law, 182–213. in [Wheeler/Zurek 1983].

    Google Scholar 

  • Wheeler, J.A. 1990. Information, Physics, Quantum: The search for Links. in: [Zurek 1990, 3–28].

    Google Scholar 

  • Whitehead, A.N. 1925. Science and the Modern World. New York: Macmillan.

    Google Scholar 

  • Whitehead, A.N. 1929. Process and Reality. London: Macmillan Publication, corr. ed. 1978, 1979.

    Google Scholar 

  • Wiesner, S.J. 1983. Conjugate Coding. SIGACT News 15: 78–88.

    Article  MATH  Google Scholar 

  • Wigner, E.P. 1960. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications in Pure and Applied Mathematics 13: 1–13.

    Google Scholar 

  • Wigner, E.P. 1961. Remarks on the Mind–Body Question. In The Scientist Speculates, ed. I.J. Good, 284–302. London: Heinemann; Report in [Wheeler/Zurek 1983, 168–81].

    Google Scholar 

  • Withaker, M.A.B. 2004. The EPR Paper and Bohr’s Response. Foundations of Physics 34: 1305–40.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wootters, W.K., and W.H. Zurek. 1979. Complementarity in the Double-Slit Experiment: Quantum Nonseparability and a Quantitative Statement of Bohr’s Principle. Physical Review D19: 473–84; Report in [Wheeler/Zurek 1983, 443–54].

    Article  ADS  Google Scholar 

  • Zeh, H.D. 1970. On the Interpretation of Measurement in Quantum Theory. Foundations of Physics 1: 69–76; Report in [Wheeler/Zurek 1983, 342–49].

    Article  ADS  Google Scholar 

  • Zeilinger, A. 2005. The Message of the Quantum. Nature 438: 743.

    Article  ADS  Google Scholar 

  • Zou, X.Y., T.P. Grayson, L.J. Wang, and L. Mandel. 1992. Can an Empty de Broglie Pilot Wave Induce Coherence? Physical Review Letters 68: 3667–69.

    Article  ADS  Google Scholar 

  • Zurek, W.H. 1981. Pointer Basis of Quantum Apparatus: into What Mixture Does the Wave Packet Collapse? Physical Review D 24: 1516–25.

    Article  ADS  MathSciNet  Google Scholar 

  • Zurek, W.H. 1982. Environment-Induced Superselection Rules. Physical Review D26: 1862–80.

    Google Scholar 

  • Zurek, W.H. 1989a. Thermodynamic Cost of Computation, Algorithmic Complexity and the Information Metric. Nature 341: 119–24.

    Article  ADS  Google Scholar 

  • Zurek, W.H. 1989b. Algorithmic Randomness and Physical Entropy. Physical Review A40: 4731–51.

    Article  ADS  MathSciNet  Google Scholar 

  • Zurek, W.H. 1991. Decoherence and the Transition from Quantum to Classical. Physics Today 44 (10): 36–44.

    Article  Google Scholar 

  • Zurek, W.H. 2004. Quantum Darwinism and Envariance. In [BARROW et al. 2004, 121–37].

    Google Scholar 

  • Zurek, W.H. 2007. Quantum Origin of Quantum Jumps: Breaking of Unitary Symmetry Induced by Information Transfer in the Transition from Quantum to Classical. Physical Review A76: 052110-1–5.

    Google Scholar 

  • Zurek, W.H. 2009. Quantum Darwinism. Nature Physics 5: 181–88. https://doi.org/10.1038/nphys1202

    Article  ADS  Google Scholar 

  • Zurek, W.H. 2010. Quantum Jumps, Born’s Rule, and Objective Reality. In [Saunders et al. 2010, 409–32].

    Google Scholar 

  • Zurek, W.H. 2013. Wave-Packet Collapse and the Core Quantum Postulates: Discreteness of Quantum Jumps from Unitarity, Repeatability, and Actionable Information. Physical Review A87.5: 052111. https://doi.org/10.1103/PhysRevA.87.052111

  • Zwolak, M., and W.H. Zurek. 2013. Complementarity of Quantum Discord and Classically Accessible Information. Scientific Reports 3: 1729. https://doi.org/10.1038/srep01729

  • \(\dot{\rm Z}\)ukowski, M., A. Zeilinger, M.A. Horne and A.K. Ekert.,. 1993. Event-Ready-Detectors Bell Experiment via Entanglement Swapping. Physical Review Letters 71: 4287–90.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auletta, G. (2019). The Main Interpretations. In: The Quantum Mechanics Conundrum. Springer, Cham. https://doi.org/10.1007/978-3-030-16649-6_3

Download citation

Publish with us

Policies and ethics