Skip to main content

Summary of the Basic Elements of the Theory

  • Chapter
  • First Online:
The Quantum Mechanics Conundrum
  • 1043 Accesses

Abstract

The aim of this chapter is to introduce some basic notions of quantum mechanics (=QM). The physicist or the scholar who already knows this background may skip it. After having introduced the basic historical reasons that led to quantum theory with the final result of the Schrödinger equation, I introduce the reader to the two basic principles of this theoretical building: the superposition and the quantisation principles. This will be the appropriate context for introducing the basic physical observables, like position and momentum as well as time and energy. It will be shown that all basic transformations in QM are unitary (reversible). After an examination of the non-commutativity among quantum observables (strictly related to quantisation) with the definition of angular momentum and the consequent uncertainty relations, some further principles are presented: Pauli’s exclusion principle with the notion of spin and the two statistics (Fermi–Dirac and Bose–Einstein) ruling the two families of quantum particles: fermions and bosons, respectively; a first and rough version of the complementarity principle; finally a brief presentation of the heuristic correspondence principle follows. In the final section of the chapter, we shall deal with the formalism of the density matrix, very helpful for the notion of quantum-state space allowing the distinction between pure states and mixtures. Moreover, this formalism will be particularly relevant for distinguishing between entangled and product states and for dealing with compound systems (total and marginal states).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Planck (1922).

  2. 2.

    See Kuhn (1978, Chap. 1).  Another important source of Planck contribution is the work on irreversibility and entropy of Ludwig Boltzmann (Kuhn 1978, Chap. 2).

  3. 3.

    Planck (1900ab).  The reader interested into the general historical issues of QM may have a look at Jammer (1966)  and Mehra and Rechenberg (1982–2001),  to which I shall also sometimes refer in the following.

  4. 4.

    Throughout this book I shall use the SI system of units.

  5. 5.

    Planck (1906).

  6. 6.

    The basic physical units are length L, time T, mass M, electric current I, temperature \(\Theta \), quantity of substance N, and luminous intensity J.

  7. 7.

    Letter of Planck to R. Williams, 7 October 1931.

  8. 8.

    Planck (1931).  Dynamical variables are momentum, angular momentum, energy, while kinematic ones are space, angle, time.

  9. 9.

    But, as we shall see in the following, he also developed a robust philosophical reflection.

  10. 10.

    Einstein (1905).

  11. 11.

    See Kuhn (1978, Chaps. 3–4).

  12. 12.

    As clearly pointed out in Born (1949, p. 80).  As we shall see, Planck performed an inference that is called abduction.

  13. 13.

    See also Bohr (1949, p. 202).

  14. 14.

    See Kuhn (1978, Chap. 5).

  15. 15.

    Bohr (1913).

  16. 16.

    Auletta (2000, p. 17).

  17. 17.

    Compton (1923).

  18. 18.

    Note that Bohr was dismissive of the concept of a light’s particle up to the Compton’s experiment (Home and Whitaker 2007, p. 25).

  19. 19.

    Leibniz (1715–16, p. 25). See also Boscovich (1754).

  20. 20.

    The reader interested in this subject may have a look at Auletta (2004); see also Auletta (2000, pp. 565–67).

  21. 21.

    Auletta (2000, p. 23).

  22. 22.

    Born (1949, Chaps. 6–7).  “How small a fraction of a grain of millet must I demand is put on the first square of the chess board if after doubling up at every square I end up having to payout only a pound of millet? It would be a figure of such smallness as to have no meaning as a figure for a margin of error” (Anscombe and Elizabeth 1971, pp. 95–96).

  23. 23.

    See also Margenau (1950, Sect. 6.5).

  24. 24.

    Wheeler (1988).  See also Poincaré (1902, p. 51) or Poincaré (1905, pp. 61–62).

  25. 25.

    As recalled in Auletta (2000, pp. 567–68).

  26. 26.

    For a summary of the historical background of the formula see Rindler (2001, p. 114).

  27. 27.

    The physical continuum, according to Aristotle, cannot be made up of indivisibles. An indivisible object should not have parts. Continuum is always divisible in other divisible parts. See Aristotle (1950, VI, 1, 231a18–b19).  The extension is a continuous one and, therefore, it is divisible. See Aristotle (1950, III, 6, 206b1-20).

  28. 28.

    Descartes (1641). Descartes was the father of analytical geometry succeeding in unifying mathematical analysis and geometry thanks to the introduction of the Cartesian coordinate system. However, we shall deal here mainly with his metaphysical theses. It may be also noted that equating matter and extension deprives the former of its main causal resources of which we shall have to say more in the following.

  29. 29.

    Leibniz (1712–14).

  30. 30.

    Among the first interpretations of light, a considerable stress was made on its geometric properties of e.g. reflection (Newton 1704).

  31. 31.

    Compton (1923).

  32. 32.

    de Broglie (1924).

  33. 33.

    Davisson and Germer (1927).  Note that de Broglie did not agree with their statistical interpretation of the phenomenon.

  34. 34.

    Einstein (1993, pp. 160–61).  It is interesting to remark that the first hint towards the wave particle duality, at least for light, can be found in Einstein (1909).

  35. 35.

    Eddington (1929, p. 201).

  36. 36.

    Dirac (1939).  Thus, I do not follow here a strict historical reconstruction.

  37. 37.

    https://en.wikipedia.org/wiki/Separable_space.

  38. 38.

    Dirac (1930, Chap. 1).  For a long time, this has been a reference textbook on QM.

  39. 39.

    On this see also Schrödinger (1926e).

  40. 40.

    Born and Jordan (1925), Born et al. (1926).

  41. 41.

    Schrödinger (1926a, b, c, d). For historical reconstruction see Jammer (1966, Sect. 5.3).

  42. 42.

    For a presentation of the Schrödinger equation the reader may have a look at Auletta et al. (2009, Chap. 3), Auletta and Wang (2014, Chap. 7). These two textbooks will be very often quoted since they can provide both formal understanding and further reference about several topics of the present book: the former gives an account of QM for physicists, the latter is addressed to a wider audience and therefore I suggest the inexpert reader have a look at it for a better understanding of what follows. Since they are very much quoted, the final index of authors does not report these entries.

  43. 43.

    To the reader who needs a refresh in derivation and integration I strongly recommend (Auletta and Wang 2014, Sects. 6.2 and 6.4–6.5).

  44. 44.

    Byron and Fuller (1969–70, I, Sect. 5.6).  I strongly recommend this classical book for several problems of the mathematical calculus and notation used here. For the reader needing a more basic teaching in mathematics, I recommend the three-volume (Apostol 1969).

  45. 45.

    Leibniz (1686, 1695).

  46. 46.

    Lagrange (1788–89).

  47. 47.

    For this examination I consider still the classical text (Landau and Lifshitz 1976)  as fundamental.

  48. 48.

    The reason is that the Hamiltonian selects energy as a privileged quantity, but since energy is conjugate with time, it would also select a special time coordinate, which is in contrast with Einstein’s relativity (Kastner 2013, p. 51).

  49. 49.

    Landau and Lifshitz (1976, Sects. 40 and 43).

  50. 50.

    I follow here Auletta et al. (2009, Chap. 1). See also Auletta and Wang (2014, Chap. 2).

  51. 51.

    See Dirac (1930, p. 9).

  52. 52.

    Self-interference was experimentally verified for the first time in the 1960s (Pfleegor and Mandel 1967a, b).  Successively, further confirmations have come from the experiments performed by different teams (Grangier et al. 1986 ; Franson and Potocki 1988).

  53. 53.

    As e.g. formulated in Baumgarten (1739) , Kant (1763). Peirce understood that modern philosophy is characterised by this assumption (Peirce 1903, p. 180)  and is likely to be the first philosopher to have considered that individual beings are not perfectly determined (Peirce 1877).  He also acknowledged that the omnimoda determinatio  is a necessary condition of classical determinism (Peirce 1892, p. 116).  On this see also Auletta (2004).

  54. 54.

    Schlosshauer (2007, pp. 116–17).

  55. 55.

    Born (1926).  For historical reconstruction see Jammer (1966, Sect. 6.1).

  56. 56.

    Auletta (2000, pp. 104–105).

  57. 57.

    I follow here Auletta and Wang (2014, Chap. 3).

  58. 58.

    In the following, when there is no lack of generality, I shall introduce the formalism for the 2D Hilbert space. Sometimes, I shall explicitly show the generalisation to the nD case.

  59. 59.

    Byron and Fuller (1969–70, I, Sect. 4.2).

  60. 60.

    As pointed out in Auletta and Wang (2014, Sects. 4.1–4.3). This seems to have been also the central point of the so-called modal interpretation:  see van Fraassen (1991) , Dieks (1994).

  61. 61.

    For what follows see also Jammer (1966, Chap. 5).

  62. 62.

    Heisenberg (1925).

  63. 63.

    For a technical account of this problem see Auletta et al. (2009, Sect. 1.3.2).

  64. 64.

    See Byron and Fuller (1969–70, I, Sect. 3.7).  I follow the short summary in Auletta and Wang (2014, Sect. 3.6).

  65. 65.

    I follow Auletta and Wang (2014, Sect. 3.7).

  66. 66.

    For the pure mathematical aspects see Byron and Fuller (1969–70, I, Sect. 3.10).  For a technical account see Auletta et al. (2009, Chap. 2). For a simplified summary see Auletta and Wang (2014, Sect. 4.4).

  67. 67.

    Prugovec̆ki (1971, pp. 250–51). This is a very technical book but important for understanding the mathematics of QM.

  68. 68.

    Byron and Fuller  (1969–70, I, Sect. 4.4).

  69. 69.

    Here I follow Auletta and Wang (2014, Sects. 4.5–4.6).

  70. 70.

    By using unitary operators of this kind we can always diagonalize a matrix (Byron and Fuller 1969–70, I,  Sect. 4.7).

  71. 71.

    Here I follow Auletta and Wang (2014, Sect. 6.3).

  72. 72.

    Byron and Fuller (1969–70, I, Sect. 5.1).

  73. 73.

    Byron and Fuller (1969–70, I, Sect.  5.3).

  74. 74.

    I follow Auletta and Wang (2014, Sect. 6.6).

  75. 75.

    Note that Eq. (1.142) is formally identical to a classical diffusion equation.

  76. 76.

    Byron and Fuller (1969–70, I, Sect.  1.7).

  77. 77.

    Misner et al.  (1970, pp. 53–59).

  78. 78.

    Misner et al.  (1970, p. 83).

  79. 79.

    Byron and Fuller (1969–70, I, Sect.  5.7).

  80. 80.

    Auletta et al. (2009, Sect. 2.2.2).

  81. 81.

    On this subject see Auletta et al. (2009, Sect. 3.1.3).

  82. 82.

    Heisenberg (1925).  For historical reconstruction see Jammer (1966, Sects.  5.1–5.2).

  83. 83.

    In fact, the commutation relation can be considered as a particular case of Leibniz’s rule (Penrose 2004, pp.  494–95).

  84. 84.

    Here I follow Auletta and Wang (2014, Sect. 6.8).

  85. 85.

    Byron and Fuller (1969–70, I, Sect. 4.7).

  86. 86.

    Landau and Lifshitz (1976, Sect. 42).  See also Landsman (2017, Sect. 3.2).

  87. 87.

    On this subject see the extensive treatment in Auletta et al. (2009, Sect. 6.1)   but also Auletta and Wang (2014, Sects. 8.1–8.4) for a simplified exposition.

  88. 88.

    Byron and Fuller (1969–70, I,  p. 17).

  89. 89.

    This result can also be written in terms of determinants Byron and Fuller (1969–70, I, Sect.  3.8).

  90. 90.

    Byron and Fuller (1969–70, I, Sect.  1.4).

  91. 91.

    I follow for the Euler angles the \(x-y-z\)-convention.

  92. 92.

    On these subjects see Auletta et al. (2009, Sects. 3.9, 6.5).

  93. 93.

    Bohr (1913).

  94. 94.

    The interested reader may have a look at Auletta et al. (2009, Chap. 6).

  95. 95.

    See Auletta and Wang (2014, Sect. 8.4) for details about the transformation from Cartesian into spherical coordinates and vice versa.

  96. 96.

    Byron and Fuller  (1969–70, I, Sects. 1.8 and 5.5).

  97. 97.

    Byron and Fuller  (1969–70, I, Sect. 5.8).

  98. 98.

    Auletta (2000, pp. 32, 35, 127, 216–17, 291–94).

  99. 99.

    Heisenberg (1927).  For historical reconstruction see Jammer (1966, Sect. 7.1).  On this subject see also Auletta (2000, Chap. 7)   and literature therein. For a rather technical account of this subject see Auletta et al. (2009, Sect. 2.3.2).

  100. 100.

    Robertson (1929).

  101. 101.

    Heisenberg (1927).

  102. 102.

    See Auletta et al. (2009, Sects. 3.8, 4.4, 6.5, 13.3).

  103. 103.

    Heisenberg (1927).  See also Cohen-Tannoudji (1991, pp. 60–61).

  104. 104.

    Auletta (2000, pp. 124–27).

  105. 105.

    It is interesting to point out the relationship that from the beginning was formed between QM and Kant’s philosophy, highlighted in Heisenberg (1969, Chap. 10).  On the more recent Kantian point of view see D’espagnat (1995).

  106. 106.

    See Auletta (2000, pp. 107–115, 129–31) and quoted literature.

  107. 107.

    Renninger (1960).

  108. 108.

    The reader interested in this kind of problems may have a look at Auletta (2004).

  109. 109.

    Arnold (1978, pp. 88–89) , Auletta et al. (2009, Chap. 8).

  110. 110.

    On unitary operators see Auletta et al. (2009, Chaps. 3 and 8).

  111. 111.

    See Landsman (2017, Sect. 5.12).

  112. 112.

    Also J. von Neumann contributed to prove this theorem.

  113. 113.

    Tinkham (1964, p. 6).  This is a good textbook for knowing more about group theory. See also Byron and Fuller (1969–70, II, Chap. 10).  The reader interested in the notion of symmetry may also have a look at Fuchs and Schweigert (1997).

  114. 114.

    Fuchs and Schweigert  (1997, p. 11).

  115. 115.

    Penrose (2004, Sect. 13.5).

  116. 116.

    On what follows see Auletta et al. (2009, Sects. 3.5.3 and 8.3).

  117. 117.

    Wigner (1959).

  118. 118.

    On this subject see Auletta et al. (2009, Sect. 3.1.4).

  119. 119.

    On the subject see Auletta et al. (2009, Sect. 8.1).

  120. 120.

    Gerlach and Stern (1922a, b, c).  For historical reconstruction see Jammer (1966, Sect. 3.4).

  121. 121.

    I follow here Auletta and Wang (2014, Sect. 8.6), which gives a quite comprehensive account of this subject.

  122. 122.

    Pauli (1927).

  123. 123.

    Auletta et al. (2009, Sect. 6.4.4).

  124. 124.

    More precisely, we should consider the common eigenstates \(\left| \left. j_1,j_2,j,m\right\rangle \right. \) of \(\hat{\mathbf {J}}^2_1\), \(\hat{\mathbf {J}}^2_2\), \(\hat{\mathbf {J}}^2\), and \(\hat{J}_z\). This however does not change our discussion and conclusions. Therefore, \(\left| \left. j,m\right\rangle \right. \) can be thought of as a shorthand for \(\left| \left. j_1,j_2,j,m\right\rangle \right. \).

  125. 125.

    On this subject see Auletta et al. (2009, Chap. 7).

  126. 126.

    The reader interested to know more can have a look at Auletta et al. (2009, Sect. 7.2) in particular.

  127. 127.

    Penrose (2004, Sect. 5.5).

  128. 128.

    ‘T Hooft (2016, p. 20).

  129. 129.

    Reported in Wilczek (2006).  An accessible book (not a textbook!) to many problems of fundamental physics.

  130. 130.

    Pauli (1925).

  131. 131.

    Planck (1906).

  132. 132.

    Einstein (1916).  See also Home and Whitaker (2007, pp. 26–27) , Schwartz (2014, Sect. 2.1).

  133. 133.

    A summary in Jammer (1966, Sect. 3.2).  See also Auletta (2000, Sect. 3.2). In Bokulich (2008, Sect. 4.2)  it is argued that Bohr’s formulation of the principle was slightly different and concerned the correspondence between transition probabilities between stationary states like for different atomic levels, on the one hand, and amplitudes of the components of a classical harmonic oscillator. This should correspond to the early formulation of the principle but it is rather limited in scope.

  134. 134.

    Dirac (1933, p. 111).

  135. 135.

    See Kuhn (1978, p. 118).

  136. 136.

    For all this issue, I recommend (Bokulich 2008, Sect. 1.4).  Bokulich points out that also the Ehrenfest theorem (allowing to derive quantum analogues of the Hamilton’s equations (1.45): on this see Auletta et al. (2009, Sect. 3.7) cannot be taken to adequately characterise the classical limit.  In fact, the related equation only holds under highly restricted circumstances due to the fact that quantum-mechanical expectation values do not follow classical equations of motion. Thus, in that limit, one must be able to replace the mean values of functions (say, of position) with a function of the means (of position). However, “this substitution is legitimate only if the Hamiltonian of the system is a polynomial of second degree or less, such as in the case of linear or harmonic oscillator potentials.”

  137. 137.

    Home and Whitaker  (2007, p. 54).

  138. 138.

    It was made known to a large scientific audience in the historical paper (Bohr 1928).  For historical reconstruction see Jammer (1966, Sect. 7.2).  See also Auletta (2000, Chap. 8)   for further examination and references. In fact, there is a huge amount of different interpretations of the meaning of this principle.

  139. 139.

    A point of view still supported in Englert et al. (1994).

  140. 140.

    ‘T Hooft (2016, p. 30).

  141. 141.

    Englert et al.  (1994).

  142. 142.

    Density matrices were first introduced in Landau (1927).  I follow here Auletta and Wang (2014, Sects. 7.8–7.9). The reader interested in a more technical treatment can see Auletta et al. (2009, Chap. 5).

  143. 143.

    Byron and Fuller  (1969–70, I, p. 123).

  144. 144.

    See also Landsman (2017, Sects.  2.2–2.3).

  145. 145.

    For the mathematical aspects see Byron and Fuller  (1969–70, I, Sect. 3.11).

  146. 146.

    See Schmidt (1907)  and also Peres (1995) . I follow here Auletta et al. (2009, Sect. 5.5.3).

  147. 147.

    See Nielsen and Chuang (2000, 110) , D’Ariano et al.  (2017, Sects. 6.3 and 7.3).

References

  • Anscombe, G., and M. Elizabeth. 1971. Causality and Determination. Cambridge: Cambridge University Press; rep. in [Sosa and Tooley 1993, 88–104].

    Google Scholar 

  • Apostol, Tom M. 1969. Calculus. New York: Wiley, 2nd ed.

    Google Scholar 

  • Aristotle. 1831. Opera (Ed. Immanuel Bekker). Berlin: G. Reimerum.

    Google Scholar 

  • Aristotle. 1950. Physica. Oxford: Clarendon, 1950, 1988; also in [Aristotle Op., 184–267].

    Google Scholar 

  • Arnold, Vladimir I. 1978. Mathematical Methods of Classical Mechanics (tr. from russ.). New York: Springer, 1978; 2nd ed.: 1989.

    Google Scholar 

  • Auletta, Gennaro. 2000. Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific, 2000; rev. ed. 2001.

    Google Scholar 

  • Auletta, Gennaro. 2004. Critical Examination of the Conceptual Foundations of Classical Mechanics in the Light of Quantum Physics. Epistemologia 27: 55–82.

    MATH  Google Scholar 

  • Auletta, G., Fortunato, M., and Parisi, G. 2009. Quantum Mechanics, Cambridge, University Press, rev. paperback ed. 2013.

    Google Scholar 

  • Auletta, Gennaro. 2011. Cognitive Biology: Dealing with Information from Bacteria to Minds. Oxford: University Press.

    Book  Google Scholar 

  • Auletta, G., and S.-Y. Wang. 2014. Quantum Mechanics for Thinkers. Singapore: Pan Stanford Publisher. https://doi.org/10.4032/9789814411721.

    Book  MATH  Google Scholar 

  • Baumgarten, Alexander Gottlieb. 1739. Metaphysica 1739; 7th ed., Halle 1779; rep. Hildesheim–New York, Georg Olms, 1982.

    Google Scholar 

  • Bohr, Niels. 1913. On the Constitution of Atoms and Molecules. Philosophical Magazine 26: 1–25, 476–502, 857–875; rep. in [Bohr CW, II, 161–233].

    Google Scholar 

  • Bohr, Niels. 1928. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 121: 580–590; rep. in [Bohr CW, VI, 148–58].

    Google Scholar 

  • Bohr, Niels. 1949. Discussion With Einstein on Epistemological Problems in Atomic Physics. in [Schilpp 1949, 201–241].

    Google Scholar 

  • Bohr, Niels. 1996. Collected Works. Amsterdam: North Holland.

    MATH  Google Scholar 

  • Bokulich, Alisa. 2008. Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge: University Press.

    Book  Google Scholar 

  • Born, Max. 1926. Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 38: 803–827.

    Article  ADS  Google Scholar 

  • Born, Max. 1949. Natural Philosophy of Chance and Cause. Oxford: Clarendon, 1949; New York, 1964.

    Google Scholar 

  • Born, M., and P. Jordan. 1925. Zur Quantenmechanik. Zeitschrift für Physik 34: 858–888.

    Article  ADS  Google Scholar 

  • Born, M., W. Heisenberg, and P. Jordan. 1926. Zur Quantenmechanik II. Zeitschrift für Physik 35: 557–615.

    Article  ADS  Google Scholar 

  • Boscovich, Rogerius J. 1754. De continuitatis lege and ejus consectariis, pertinentibus ad prima materiae elementa eorumque vires. Roma, Collegio Romano.

    Google Scholar 

  • Brown, Laurie M. (ed.). 2005. Feynman’s Thesis: A New Approach to Quantum Theory. Singapore: World Scientific.

    MATH  Google Scholar 

  • Byron Jr., F.W., and R.W. Fuller. 1969–70. Mathematics of Classical and Quantum Physics. New York: Dover.

    Google Scholar 

  • Cohen-Tannoudji, Gilles. 1991. Les constantes universelles. Paris: Hachette.

    Google Scholar 

  • Compton, Arthur H. 1923. A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review 21: 483–502.

    Article  ADS  Google Scholar 

  • D’Ariano, M., G. Chiribella, and P. Perinotti. 2017. Quantum Theory from First Principles: An Informational Approach. Cambridge: University Press.

    Book  Google Scholar 

  • Davisson, C.J., and L.H. Germer. 1927. Diffraction of Electrons By a Crystal of Nickel. Physical Review 30: 705–740.

    Article  ADS  Google Scholar 

  • de Broglie, Louis. 1924. Sur la définition générale de la correspondance entre onde et mouvement. Comptes Rendus à l’Academie des Sciences 179: 39–40.

    Google Scholar 

  • Descartes, René. 1641. Meditationes de prima philosophia. Paris; in: [Descartes Œ, VII].

    Google Scholar 

  • Descartes, René, Œuvres (Ed. C. Adam/ P. Tannery), Paris, Vrin, 1907–1913; 1964–74

    Google Scholar 

  • D’espagnat, Bernard., (ed.). 1995. Veiled Reality. Reading, MA: Addison/Wesley.

    Google Scholar 

  • Dieks, Dennis. 1994. Modal Interpretation of Quantum Mechanics, Measurements, and Macroscopic Behavior. Physical Review A49: 2290–2299.

    Article  ADS  Google Scholar 

  • Dirac, Paul A.M. 1930. The Principles of Quantum Mechanics, 4th ed. Oxford: Clarendon, 1958, 1993.

    Google Scholar 

  • Dirac, Paul A.M. 1933. The Lagrangian in Quantum Mechanics. Physikalische Zeitschrift der Sowjetunion 3.1: 64–72; rep. in [Brown 2005, 113–21].

    Google Scholar 

  • Dirac, Paul A.M. 1939. A New Notation for Quantum Mechanics. Mathematical Proceedings of the Cambridge Philosophical Society 35: 416–418. https://doi.org/10.1017/S0305004100021162.

    Article  MathSciNet  MATH  Google Scholar 

  • Eddington, Arthur Stanley. 1929. Nature of the Physical World. Cambridge: University Press.

    MATH  Google Scholar 

  • Einstein, Albert. 1905. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17: 132–148.

    Article  ADS  Google Scholar 

  • Einstein, Albert. 1909. Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Physikalische Zeitschrift 10: 817–825.

    MATH  Google Scholar 

  • Einstein, Albert. 1916. Strahlungs-emission und -absorption nach der Quanten-theorie. Deutsche Physikalische Gesellschaft, Verhandlungen 18: 318–323.

    ADS  Google Scholar 

  • Einstein, Albert. 1993. Mein Weltbild. Ullstein: Frankfurt.

    Google Scholar 

  • Englert, B.-G., M.O. Scully, and H. Walther. 1994. The Duality in Matter and Light. Scientific American 271 (6): 56–61.

    Article  Google Scholar 

  • Franson, J.D., and K.A. Potocki. 1988. Single-Photon Interference Over Large Distances. Physical Review A37: 2511–2515.

    Article  ADS  Google Scholar 

  • Fuchs, J., and C. Schweigert. 1997. Symmetries, Lie Algebras and Representations. Cambridge: University Press.

    MATH  Google Scholar 

  • Gerlach, W., and O. Stern. 1922a. Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Zeitschrift für Physik 8: 110–111.

    Article  ADS  Google Scholar 

  • Gerlach, W., and O. Stern. 1922b. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik 9: 349–352.

    Article  ADS  Google Scholar 

  • Gerlach, W., and O. Stern. 1922c. Das magnetische Moment des Silberatoms. Zeitschrift für Physik 9: 353–355.

    Article  ADS  Google Scholar 

  • Grangier, P., G. Roger, and A. Aspect. 1986. Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences. Europhysics Letters 1: 173–179.

    Article  ADS  Google Scholar 

  • Heisenberg, Werner. 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33: 879–893; rep. in [Heisenberg GW, A.I, 382–96].

    Google Scholar 

  • Heisenberg, Werner. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43: 172–198; rep. in [Heisenberg GW, A.I, 478–504].

    Google Scholar 

  • Heisenberg, Werner. 1969. Der Teil und Das Ganze. München: Piper.

    Google Scholar 

  • Heisenberg, Werner. 1984. Gesammelte Werke. Piper/Springer: München-Berlin.

    Google Scholar 

  • Home, D., and M.A.B. Whitaker. 2007. Einstein’s Struggles with Quantum Theory: A Reappraisal. Berlin: Springer.

    MATH  Google Scholar 

  • Jammer, Max. 1966. The Conceptual Development of Quantum Mechanics. New York, McGraw-Hill, 1966; 2nd ed., Thomas Publisher, 1989.

    Google Scholar 

  • Kant, Immanuel. 1763. Der einzige mögliche Beweisgrund zu einer Demonstration des Daseins Gottes; in [Kant A, I, 1–182].

    Google Scholar 

  • Kant, Immanuel, and Kants Werke. 1968. Akademie Textausgabe. Berlin: W. de Gruyter.

    Google Scholar 

  • Kastner, Ruth E. 2013. The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kuhn, Thomas S. 1978. Black-Body Theory and the Quantum Discontinuity. 1894–1912. Oxford, University Press, 1978; Chicago, The University of Chicago Press, 1987.

    Google Scholar 

  • Lagrange, Joseph-Louis. 1788–89. Mécanique analytique. Paris.

    Google Scholar 

  • Landau, Lev D. 1927. Das Dämpfungsproblem in der Wellenmechanik. Zeitschrift für Physik 45: 430–441.

    Article  ADS  Google Scholar 

  • Landau, Lev D., and E.M. Liftshitz. 1976. Mechanics (eng. tr.), I vol. of The Course of Theoretical Physics. Oxford: Pergamon.

    Google Scholar 

  • Landsman, Klaas. 2017. Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Berlin: Springer.

    Book  Google Scholar 

  • Leibniz, Gottfried. 1686. Brevis Demonstratio Erroris Mirabilis Cartesii et aliorum .... Acta Eruditorum Lipsiensium, in [Leibniz MS, VI, 117–23].

    Google Scholar 

  • Leibniz, Gottfried W. 1695. Specimen Dynamicum pro admirandis NaturæLegibus circa corporum vires et mutuas actiones detegendis et ad suas causas revocandis. Pars I. Acta Eruditorum Lipsiensium; rep. in [Leibniz MS, VI, 234–46].

    Google Scholar 

  • Leibniz, Gottfried W. 1712–14. Monadologie in [Leibniz PS, VI, 607–623].

    Google Scholar 

  • Leibniz, Gottfried W. 1715–16. Streitschriften zwischen Leibniz und Clarke [Leibniz PS, VII, 345–440]. Published before as A Collection of Papers, which passed between the late Learned Mr. Leibniz and Dr. Clarke in the Years 1715 and 1716, relating to the Principles of Natural Philosophy and Religion, London 1717.

    Google Scholar 

  • Leibniz, Gottfried W. 1971. Mathematische Scriften (Ed. Gerhardt), Halle, 1860; rep. Hildesheim, Olms, 1971. (NEA)

    Google Scholar 

  • Leibniz, Gottfried W. 1978. Philosophische Schriften (Ed. Gerhardt), Halle, 1875. rep. Olms: Hildesheim.

    Google Scholar 

  • Margenau, Henry. 1950. The Nature of Physical Reality: A Philosophy of Modern Physics. New York: McGraw-Hill, 1950; Woodbridge, Conn.: Ox Bow Press.

    Google Scholar 

  • Mehra, J., and H. Rechenberg. 1982–2001. The Historical Development of Quantum Theory. New York: Springer.

    Google Scholar 

  • Misner, C.W., K.S. Thorne, and J.A. Wheeler. 1970. Gravitation 1970, 1973. San Francisco: Freeman and Co.

    Google Scholar 

  • Newton, Isaac. 1704. Opticks or A Treatise of the Reflections, Refractions, Inflections and Colours of Light, 1704, 2nd ed. lat.; 1706, 3rd ed. 1721, London, 4th ed. 1730; New York, Dover, 1952, 1979.

    Google Scholar 

  • Nielsen, M.A., and I.L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge: University Press 2002, 2011.

    Google Scholar 

  • Pauli, Wolfgang. 1925. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik 31: 765–783.

    Article  ADS  Google Scholar 

  • Pauli, Wolfgang. 1927. Zur Quantenmechanik des magnetischen Elektrons. Zeitschrift für Physik 43: 601–623.

    Article  ADS  Google Scholar 

  • Peirce, Charles S. 1877. On a New Class of Observations, Suggested by the Principles of Logic, in [Peirce W, III, 235–37].

    Google Scholar 

  • Peirce, Charles S. 1892. The Doctrine of Necessity Examined Monist2321–37; in [Peirce W, VIII, 111-125].

    Google Scholar 

  • Peirce, Charles S. 1903. The Seven Systems of Metaphysics in [Peirce EP, II, 179–95].

    Google Scholar 

  • Peirce, Charles S. 1982. Writings, vols. I-: Bloomington, Indiana University Press.

    Google Scholar 

  • Peirce, Charles S. 1998. The Essential Peirce, vols. I-II: Bloomington, Indiana University Press.

    Google Scholar 

  • Penrose, Roger. 2004. The Road to Reality: A Complete Guide to the Laws of the Universe J. Cape, 2004; London: Vintage.

    Google Scholar 

  • Peres, Asher. 1995. Higher Order Schmidt Decompositions. Physics Letters A 202: 16–17.

    Article  ADS  MathSciNet  Google Scholar 

  • Pfleegor, R.L., and L. Mandel. 1967a. Interference Effects at the Single Photon Level. Physics Letters 24A: 766–767.

    Article  ADS  Google Scholar 

  • Pfleegor, R.L., and L. Mandel. 1967b. Interference of Independent Photon Beams. Physical Review 159: 1084–1088.

    Article  ADS  Google Scholar 

  • Planck, Max. 1900a. Über die Verbesserung der Wien’schen Spektralgleichung. Verhandlungen der Deutschen Physikalischen Gesellschaft 2: 202–204.

    Google Scholar 

  • Planck, Max. 1900b. Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft 2: 237–245.

    MATH  Google Scholar 

  • Planck, Max. 1906. Vorlesungen über die Theory der Wärmestrahlung. Leipzig: Barth, 1906; 2nd ed., 913.

    Google Scholar 

  • Planck, Max. 1922. The Origin and Development of the Quantum Theory. Oxford: Clarendon Press.

    Google Scholar 

  • Planck, Max. 1931. The Universe in the Light of Modern Physics. London: George Allen.

    Google Scholar 

  • Poincaré, Henri. 1902. La science et l’hypothèse, Paris, 1902; Flammarion, 1968.

    Google Scholar 

  • Poincaré, Henri. 1905. La Valeur de la science. Paris: Flammarion.

    MATH  Google Scholar 

  • Prugove\(\breve{c}\)ki, Eduard. 1971. Quantum Mechanics in Hilbert Space, 1971; 2nd ed.: New York: Academic Press, 1981.

    Google Scholar 

  • Renninger, Mauritius K. 1960. Messungen ohne Störung des Meßobjekts. Zeitschrift für Physik 158: 417–421.

    Article  ADS  Google Scholar 

  • Rindler, Wolfgang. 2001. Relativity: Special, General, and Cosmological. Oxford: University Press.

    MATH  Google Scholar 

  • Robertson, H.P. 1929. The Uncertainity Principle. Physical Review 34: 163–164.

    Article  ADS  Google Scholar 

  • Schilpp, Arthur (Ed.) 1949. Albert Einstein. Philosopher-Scientist. La Salle (Illinois), Open Court, 1949, 3rd ed. 1988.

    Google Scholar 

  • Schlosshauer, Maximilian. 2007. Decoherence and the Quantum-to-Classical Transition. Berlin: Springer.

    Google Scholar 

  • Schmidt, Erhard. 1907. Zur Theorie des linearen und nichtlinearen Integralgleichungen. I Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Mathematische Annalen 63: 433–476.

    Article  MathSciNet  Google Scholar 

  • Schrödinger, Erwin. 1926a. Quantisierung als Eigenwertproblem I. Annalen der Physik 79: 361–376; rep. in [Schrödinger GA, III, 82–97].

    Google Scholar 

  • Schrödinger, Erwin. 1926b. Quantisierung als Eigenwertproblem II. Annalen der Physik 79: 489–527; rep. in [Schrödinger GA, III, 98–136].

    Google Scholar 

  • Schrödinger, Erwin. 1926c. Quantisierung als Eigenwertproblem III. Annalen der Physik 80: 437–90; rep. in : [Schrödinger GA, III, 166–219].

    Google Scholar 

  • Schrödinger, Erwin. 1926d. Quantisierung als Eigenwertproblem IV. Annalen der Physik 81: 109–139; rep. in [Schrödinger GA, III, 220–250].

    Google Scholar 

  • Schrödinger, Erwin. 1926e. Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen. Annalen der Physik 79: 734–756; rep. in [Schrödinger GA, III, 143-65]

    Article  ADS  Google Scholar 

  • Schrödinger, Erwin. 1984. Gesammelte Abhandlungen. Wien: Verlag der österreichischen Akademie der Wissenschaften.

    Google Scholar 

  • Schwartz, Matthew D. 2014. Quantum Field Theory and the Standard Model. Cambridge: University Press.

    Google Scholar 

  • Sosa, E. and Tooley, M. (Eds.) 1993. Causation. Oxford University Press.

    Google Scholar 

  • ‘T Hooft, Gerard., 2016. The Cellular Automaton Interpretation of Quantum Mechanics. Berlin: Springer.

    Google Scholar 

  • Tinkham, Michael. 1964. Group Theory and Quantum Mechanics. New York: Dover; 2nd ed. 1992.

    Google Scholar 

  • van Fraassen, Bas C. 1991. Quantum Mechanics. An Empiricist View, 1995. Oxford: Clarendon.

    Google Scholar 

  • Wheeler, John A. 1988. World as System Self-Synthesized by Quantum Networking. IBM Journal of Research and Development 32: 4–15. https://doi.org/10.1147/rd.321.0004.

    Article  Google Scholar 

  • Wigner, Eugene P. 1959. Group Theory. New York: Academic.

    MATH  Google Scholar 

  • Wilczek, Frank. 2006. Fantastic Realities: 49 Mind Journeys and a Trip to Stockholm. Singapore: World Scientific.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auletta, G. (2019). Summary of the Basic Elements of the Theory. In: The Quantum Mechanics Conundrum. Springer, Cham. https://doi.org/10.1007/978-3-030-16649-6_1

Download citation

Publish with us

Policies and ethics