Skip to main content

Application of Bone Morphometry and Densitometry by X-Ray Micro-CT to Bone Disease Models and Phenotypes

  • Chapter
  • First Online:
Micro-computed Tomography (micro-CT) in Medicine and Engineering

Abstract

Micro-CT is becoming a gold standard for quantitative imaging in preclinical disease models in bone and dental research. Osteoporosis research routinely uses micro-CT for 3D analysis of the architecture and mechanical competence of trabecular and cortical bone. Most published methodological research on micro-CT in bone has focussed on osteoporosis. However there is equal potential for micro-CT to quantitatively assess many other bone and dental disease models (and genetic phenotypes). This potentially confronts a micro-CT user with a daunting task of developing or learning many detailed methodologies corresponding to each of these research areas. However here a unified methodological approach or “pipeline” is presented that can be applied to all preclinical bone research models. This consists of a series of steps: (a) the scan and reconstruction, (b) orienting the 3D image in a standardised way, (c) delineating the volume of interest (VOI) and (d) segmentation and 3D analysis with application-specific interpretation of measured parameters. How this pipeline works in practice is described for five example applications: osteoporosis, arthritis bone effects, arthritis cartilage effects, bone tumour and fracture callus healing. All these steps can be performed in a single scanner and software environment, not requiring numerous software packages and diverse methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. JOSA A. 1984;1(6):612–9.

    Article  Google Scholar 

  2. Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  Google Scholar 

  3. Sasov AY. Desktop x-ray micro-CT. DGZfP proceedings BB 67-CD, Computerised tomography for industrial applications and image processing in radiology. March 15-17, 1999, Berlin, Germany, pp. 165–168, 1999.

    Google Scholar 

  4. Frost HM. Preparation of thin undecalcified bone sections by rapid manual method. Stain Technol. 1958;33(6):273–7.

    Article  CAS  Google Scholar 

  5. Frost HM. Tetracycline-based histological analysis of bone remodelling. Calcif Tissue Res. 1969;3:211–37.

    Article  CAS  Google Scholar 

  6. Villanueva AR, Hattner RS, Frost HM. A tetrachrome stain for fresh, mineralized bone sections, useful in the diagnosis of bone diseases. Stain Technol. 1964;39:87–94.

    Article  CAS  Google Scholar 

  7. Recker RR, Histomorphometry B. techniques and interpretation. Boca Raton, FL: CRC Press, Inc.; 1983.

    Google Scholar 

  8. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone Histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res. 1987;2(6):595–610.

    Article  CAS  Google Scholar 

  9. Lorensen WE, Cline HE. Marching cubes: a high resolution 3d surface construction algorithm. Comput Graph. 1987;21(4):163–9.

    Article  Google Scholar 

  10. Borgefors G. On digital distance transforms in three dimensions. Comput Vis Image Underst. 1996;64(3):368–76.

    Article  Google Scholar 

  11. Salmon PL, Liu X. MicroCT bone densitometry: context sensitivity, beam hardening correction and the effect of surrounding media. Open Access J Sci Technol. 2014;2:101142. https://doi.org/10.11131/2014/101142.

    Article  Google Scholar 

  12. Srivastava PK, Mahajan P, Satyawali PK, Kumar V. Observation of temperature gradient metamorphism in snow by X-ray computed microtomography: measurement of microstructure parameters and simulation of linear elastic properties. Ann Glaciol. 2010;50(54):73–82.

    Article  Google Scholar 

  13. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber. 1979;9(1):62–6. https://doi.org/10.1109/TSMC.1979.4310076.

    Article  Google Scholar 

  14. Pratt WK. Digital image processing. 2nd ed. New York: Wiley; 1991. Chapter 16.

    Google Scholar 

  15. Salmon PL, Buelens E, Sasov AY. Performance of in vivo micro-CT analysis of mouse lumbar vertebral and knee trabecular bone architecture. J Bone Miner Res. 2003;18(Suppl 2):S256.

    Google Scholar 

  16. Hildebrand T, Ruegsegger P. A new method for the model independent assessment of thickness in three dimensional images. J Microsc. 1997;185:67–75.

    Article  Google Scholar 

  17. Remy E, Thiel E. Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D. Pattern Recogn Lett. 2002;23:649–61.

    Article  Google Scholar 

  18. Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comp Meth Biomech Biomed Eng. 1997;1:15–23.

    Article  Google Scholar 

  19. Smit TH, Schneider E, Odgaard A. Star length distribution: a volume-based concept for the characterization of structural anisotropy. J Microsc. 1998;191(3):249–57.

    Article  Google Scholar 

  20. Harrigan TP, Mann RW. Characterisation of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci. 1984;19:761–7.

    Article  CAS  Google Scholar 

  21. Straumit I, Lomov SV, Verpoest I, Wevers M. Determination of local fibers orientation in composite material from micro-CT data. In: Proceedings of the 11th International Conference on Textile Composites (TexComp-11) 2013 Sep 19.

    Google Scholar 

  22. Gunderson HJG, Boyce RW, Nyengaard JR, Odgaard A. The Conneulor: unbiased estimation of connectivity using physical dissectors under projection. Bone. 1993;14:217–22.

    Article  Google Scholar 

  23. Toriwaki J, Yonekura T. Euler number and connectivity indexes of a three dimensional digital picture. Forma Tokyo. 2002;17(3):183–209.

    Google Scholar 

  24. Theiler J. Estimating fractal dimension. J Opt Soc Am. 1990;7(6):A1055–73.

    Article  Google Scholar 

  25. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 2013;28(1):1–16.

    Article  Google Scholar 

  26. Salmon PL, Ohlsson C, Shefelbine SJ, Doube M. Structure model index does not measure rods and plates in trabecular bone. Front Endocrinol. 2015;6:162.

    Article  Google Scholar 

  27. Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone. 1992;13(4):327–30.

    Article  CAS  Google Scholar 

  28. Salmon PL, Liu X. MicroCT bone densitometry: context sensitivity, beam hardening correction and the effect of surrounding media. Open Access J Sci Technol. 2014;2:ID 101142. https://doi.org/10.11131/2014/101142.

    Article  Google Scholar 

  29. Tivesten Å, Movérare-Skrtic S, Chagin A, Venken K, Salmon P, Vanderschueren D, Sävendahl L, Holmäng A, Ohlsson C. Additive protective effects of estrogen and androgen treatment on trabecular bone in ovariectomized rats. J Bone Miner Res. 2004;19(11):1833–9.

    Article  CAS  Google Scholar 

  30. Seeuws S, Jacques P, Van Praet J, Drennan M, Coudenys J, Decruy T, Deschepper E, Lepescheux L, Pujuguet P, Oste L, Vandeghinste N. A multiparameter approach to monitor disease activity in collagen-induced arthritis. Arthritis Res Ther. 2010;12(4):R160.

    Article  Google Scholar 

  31. Quan L, Zhang Y, Dusad A, Ren K, Purdue PE, Goldring SR, Wang D. The evaluation of the therapeutic efficacy and side effects of a macromolecular dexamethasone prodrug in the collagen-induced arthritis mouse model. Pharm Res. 2016;33(1):186–93.

    Article  CAS  Google Scholar 

  32. Chantry AD, Heath D, Mulivor AW, Pearsall S, Baud’huin M, Coulton L, Evans H, Abdul N, Werner ED, Bouxsein ML, Key ML. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res. 2010;25(12):2633–46.

    Article  Google Scholar 

  33. Cox TR, Rumney RM, Schoof EM, Perryman L, Høye AM, Agrawal A, Bird D, Ab Latif N, Forrest H, Evans HR, Huggins ID. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature. 2015;522(7554):106.

    Article  CAS  Google Scholar 

  34. Kassen D, Lath D, Lach A, Evans H, Chantry A, Rabin N, Croucher P, Yong KL. Myeloma impairs mature osteoblast function but causes early expansion of osteo-progenitors: temporal changes in bone physiology and gene expression in the KMS12BM model. Br J Haematol. 2016;172(1):64–79.

    Article  CAS  Google Scholar 

  35. McDonald MM, Dulai S, Godfrey C, Amanat N, Sztynda T, Little DG. Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone. 2008;43(4):653–62.

    Article  CAS  Google Scholar 

  36. Jeyabalan J, Viollet B, Smitham P, Ellis SA, Zaman G, Bardin C, Goodship A, Roux JP, Pierre M, Chenu C. The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int. 2013;24(10):2659–70.

    Article  CAS  Google Scholar 

  37. Movérare S, Venken K, Eriksson AL, Andersson N, Skrtic S, Wergedal J, Mohan S, Salmon P, Bouillon R, Gustafsson JÅ, Vanderschueren D. Differential effects on bone of estrogen receptor α and androgen receptor activation in orchidectomized adult male mice. Proc Natl Acad Sci. 2003;100(23):13573–8.

    Article  Google Scholar 

  38. Ulrich D, Van Rietbergen B, Laib A, Ruegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.

    Article  CAS  Google Scholar 

  39. Tassani S, Öhman C, Baleani M, Baruffaldi F, Viceconti M. Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone. J Biomech. 2010;43(6):1160–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Salmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salmon, P. (2020). Application of Bone Morphometry and Densitometry by X-Ray Micro-CT to Bone Disease Models and Phenotypes. In: Orhan, K. (eds) Micro-computed Tomography (micro-CT) in Medicine and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16641-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16641-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16640-3

  • Online ISBN: 978-3-030-16641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics