Skip to main content

Approximation Algorithm for Parallel Machines Total Tardiness Minimization Problem for Planning Processes Automation

  • Conference paper
  • First Online:
Book cover Advances in Computer Science for Engineering and Education II (ICCSEEA 2019)

Abstract

We present an approximation algorithm to solve the NP-hard scheduling problem of minimizing the total tardiness on identical parallel machines with a common due date and release dates of jobs. The algorithm has an estimate of the maximum possible deviation of its approximate solution from the optimum for each individual problem instance. It is based on the PSC-algorithm for the problem with equal release dates of jobs. Sufficient signs of optimality of a feasible solution and the estimate of the deviation of the obtained functional value from the optimum are known for the PSC-algorithm. The functional value obtained by the PSC-algorithm is the lower bound of the deviation of the functional value obtained by the approximation algorithm from the optimum for each individual problem instance. We give the computational data for test instances with dimensions of up to 40,000 jobs and 30 machines. The research shows that the developed algorithm is a very efficient method for the problem solving which allows to solve problems of any practical dimension. The average frequency of an optimal solution obtaining was 29.7%, and the average deviation from the optimum was 6.12%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26580-3

    Book  MATH  Google Scholar 

  2. Heydari, M., Hosseini, S.M., Gholamian, S.A.: Optimal placement and sizing of capacitor and distributed generation with harmonic and resonance considerations using discrete particle swarm optimization. Int. J. Intell. Syst. Appl. (IJISA) 5(7), 42–49 (2013). https://doi.org/10.5815/ijisa.2013.07.06

    Article  Google Scholar 

  3. Wang, F., Rao, Y., Wang, F., Hou, Y.: Design and application of a new hybrid heuristic algorithm for flow shop scheduling. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 3(2), 41–49 (2011). https://doi.org/10.5815/ijcnis.2011.02.06

  4. Cai, Y.: Artificial Fish School Algorithm applied in a combinatorial optimization problem. Int. J. Intell. Syst. Appl. (IJISA) 2(1), 37–43 (2010). https://doi.org/10.5815/ijisa.2010.01.06

    Article  Google Scholar 

  5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  6. Soltani, N., Soleimani, B., Barekatain, B.: Heuristic algorithms for task scheduling in cloud computing: a survey. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(8), 16–22 (2017). https://doi.org/10.5815/ijcnis.2017.08.03

    Article  Google Scholar 

  7. Garg, R., Singh, A.K.: Enhancing the discrete particle swarm optimization based workflow grid scheduling using hierarchical structure. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(6), 18–26 (2013). https://doi.org/10.5815/ijcnis.2013.06.03

    Article  Google Scholar 

  8. Mishra, M.K., Patel, Y.S., Rout, Y., Mund, G.B.: A survey on scheduling heuristics in grid computing environment. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(10), 57–83 (2014). https://doi.org/10.5815/ijmecs.2014.10.08

    Article  Google Scholar 

  9. Sajedi, H., Rabiee, M.: A metaheuristic algorithm for job scheduling in grid computing. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(5), 52–59 (2014). https://doi.org/10.5815/ijmecs.2014.05.07

    Article  Google Scholar 

  10. Hwang, K., Dongarra, J., Fox, G.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, Burlington (2012)

    Google Scholar 

  11. Brucker, P., Knust, S.: Complex Scheduling, 2nd edn. GOR-Publications Series. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23929-8

  12. Zgurovsky, M.Z., Pavlov, A.A.: Algorithms and software of the four-level model of planning and decision making. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications. 1st edn. Studies in Systems, Decision and Control, vol. 173, pp. 407–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_9

  13. Yalaoui, F.: Minimizing total tardiness in parallel-machine scheduling with release dates. Appl. Evol. Comput. 3(1), 21–46 (2012). https://doi.org/10.4018/jaec.2012010102

    Article  MathSciNet  Google Scholar 

  14. Tanaev, V.S., Gordon, V.S., Shafransky, Y.M.: Scheduling Theory. Single-Stage Systems. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-011-1190-4

  15. Tanaev, V.S., Shkurba, V.V.: Vvedenie v Teoriju Raspisaniy (Introduction to Scheduling Theory). Nauka, Moscow (1975). (in Russian)

    MATH  Google Scholar 

  16. Zgurovsky, M.Z., Pavlov, A.A.: The total tardiness of tasks minimization on identical parallel machines with arbitrary fixed times of their start and a common due date. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications, 1st edn. Studies in Systems, Decision and Control, vol. 173, pp. 265–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_6

  17. Zgurovsky, M.Z., Pavlov, A.A.: Introduction. In: Combinatorial Optimization Problems in Planning and Decision Making: Theory and Applications, 1st edn. Studies in Systems, Decision and Control, vol. 173, pp. 1–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98977-8_1

  18. Kramer, A., Subramanian, A.: A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems. J. Sched. 20, 1–37 (2017). https://doi.org/10.1007/s10951-017-0549-6

    Article  Google Scholar 

  19. Kovalyov, M.Y., Werner, F.: Approximation schemes for scheduling jobs with common due date on parallel machines to minimize total tardiness. J. Heuristics 8(4), 415–428 (2002). https://doi.org/10.1023/A:1015487829051

    Article  MATH  Google Scholar 

  20. Jouglet, A., Savourey, D.: Dominance rules for the parallel machine total weighted tardiness scheduling problem with release dates. Comput. Oper. Res. 38(9), 1259–1266 (2011). https://doi.org/10.1016/j.cor.2010.12.006

    Article  MathSciNet  MATH  Google Scholar 

  21. Azizoglu, M., Kirca, O.: Tardiness minimization on parallel machines. Int. J. Prod. Econ. 55(2), 163–168 (1998). https://doi.org/10.1016/s0925-5273(98)00034-6

    Article  Google Scholar 

  22. Yalaoui, F., Chu, C.: Parallel machine scheduling to minimize total tardiness. Int. J. Prod. Econ. 76(3), 265–279 (2002). https://doi.org/10.1016/s0925-5273(01)00175-x

    Article  Google Scholar 

  23. Shim, S.-O., Kim, Y.-D.: Scheduling on parallel identical machines to minimize total tardiness. Eur. J. Oper. Res. 177(1), 135–146 (2007). https://doi.org/10.1016/j.ejor.2005.09.038

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenstra, J., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. Annals Discr. Math. 1, 343–362 (1977). https://doi.org/10.1016/s0167-5060(08)70743-x

    Article  MathSciNet  MATH  Google Scholar 

  25. Baptiste, P., Jouglet, A., Savourey, D.: Lower bounds for parallel machine scheduling problems. Int. J. Oper. Res. 3(6), 643–664 (2008). https://doi.org/10.1504/ijor.2008.019731

    Article  MathSciNet  MATH  Google Scholar 

  26. Tanaka, S., Fujikuma, S.: A dynamic-programming-based exact algorithm for general single-machine scheduling with machine idle time. J. Sched. 15(3), 347–361 (2011). https://doi.org/10.1007/s10951-011-0242-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Lawler, E.L., Moore, J.M.: A functional equation and its application to resource allocation and sequencing problems. Manag. Sci. 16(1), 77–84 (1969). https://doi.org/10.1287/mnsc.16.1.77

    Article  MATH  Google Scholar 

  28. Yuan, J.: The NP-hardness of the single machine common due date weighted tardiness problem. J. Syst. Sci. Complex. 5(4), 328–333 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Anatolievich Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlov, A.A., Misura, E.B., Melnikov, O.V., Mukha, I.P., Lishchuk, K.I. (2020). Approximation Algorithm for Parallel Machines Total Tardiness Minimization Problem for Planning Processes Automation. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_43

Download citation

Publish with us

Policies and ethics