Skip to main content

A Brief History of Robotics in Surgery

  • Chapter
  • First Online:

Abstract

The second half of the twentieth century witnessed the introduction and relatively rapid expansion of industrial robots. On the other hand, robotic infiltration in healthcare has been much slower and more limited. The past decade has experienced a surge in robotic assistance in surgery, sparked by unprecedented interest in the precision and ergonomic benefits of this rapidly evolving class of technology. While robots have been introduced more broadly in surgical fields such as urology, general surgery, and gynecology, adoption in orthopedic surgery is only recently, but rapidly, expanding and likely will remain on the leading edge of the robotic revolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Faust RA. Robotics in surgery: history, current and future applications. New York: Nova Publishers; 2007.

    Google Scholar 

  2. Oxford Dictionary. Definition of robot in English. Oxford Dictionaries|English. https://en.oxforddictionaries.com/definition/robot. Accessed 11 Mar 2017.

  3. Asimov I. Runaround. I, Robot (The Isaac Asimov Collection ed.). New York City: Doubleday; 1950. p. 40.

    Google Scholar 

  4. Bill Gates. A robot in every home: the leader of the PC revolution predicts that the next hot field will be robotics. Sci Am. 2007;2961.

    Google Scholar 

  5. Pearce J. George Devol, Developer of Robot Arm, Dies at 99. The New York Times. http://www.nytimes.com/2011/08/16/business/george-devol-developer-of-robot-arm-dies-at-99.html. Published 15 Aug 2011. Accessed 11 Mar 2017.

  6. Brynjolfsson E, McAfee A. The second machine age: work, progress, and prosperity in a time of brilliant technologies. New York: W.W. Norton & Company; 2014.

    Google Scholar 

  7. Kelly K. Better than human. Wired Magazine. pp 70–83, Jan 2013.

    Google Scholar 

  8. Daugherty PR, Wilson HJ. Human + machine: reimagining work in the age of AI. Boston: Harvard Business Review Press; 2018.

    Google Scholar 

  9. Dalton DM, Burke TP, Kelly EG, Curtin PD. Quantitative analysis of technological innovation in knee arthroplasty: using patent and publication metrics to identify developments and trends. J Arthroplast. 2016;31:1366e72.

    Article  Google Scholar 

  10. Barbash GI, Friedman B, Glied SA, Steiner CA. Factors associated with adoption of robotic surgical technology in US hospitals and relationship to radical prostatectomy procedure. Ann Surg. 2014;259:1–6.

    Article  Google Scholar 

  11. Lonner JH. Robotically-assisted unicompartmental knee arthroplasty with a hand-held image-free sculpting tool. Oper Tech Orthop. 2015;25:104–13.

    Article  Google Scholar 

  12. Buckingham RA, Buckingham RO. Robots in operating theatres. BMJ. 1995;311(7018):1479–82.

    Article  CAS  Google Scholar 

  13. Lonner JH, Moretti VM. The evolution of image-free robotic assistance in unicompartmental knee arthroplasty. Am J Orthop. 2016;45:249–54.

    PubMed  Google Scholar 

  14. Ahmed K, Ibrahim A, Wang TT, et al. Assessing the cost effectiveness of robotics in urological surgery: a systematic review. BJU Int. 2012;110:1544–56.

    Article  Google Scholar 

  15. BenMessaoud C, Kharrazi H, MacDorman KF. Facilitators and barriers to adopting robotic-assisted surgery: contextualizing the unified theory of acceptance and use of technology. PLoS One. 2011;6(1):e16395. https://doi.org/10.1371/journal.pone.0016395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yarbrough AK, Smith TB. Technology acceptance among physicians: a new take on TAM. Med Care Res Rev. 2007;64:650–72.

    Article  Google Scholar 

  17. Barbash GI, Glied SA. New technology and health care costs – the case of robotic-assisted surgery. N Engl J Med. 2010;363:701–4.

    Article  CAS  Google Scholar 

  18. Blute ML, Prestipino AL. Factors associated with adoption of robotic surgical technology in US hospitals and relationship to radical prostatectomy procedure volume. Ann Surg. 2014;259:7–9.

    Article  Google Scholar 

  19. Cole AP, Trinh QD, Sood A, Menon M. The rise of robotic surgery in the new millennium. J Urol. 2017;197(2S):S213–5. https://doi.org/10.1016/j.juro.2016.11.030.

    Article  PubMed  Google Scholar 

  20. Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am. 2014;96(8):624–30. https://doi.org/10.2106/JBJS.M.00285.

    Article  PubMed  Google Scholar 

  21. https://www.marketresearchengine.com/medical-robots-market. Accessed 3 Sept 2018.

  22. https://www.researchandmarkets.com/research/8p4b2q/global_medical?w=5. Accessed 3 Sept 2018.

  23. https://www.reportlinker.com/p05653781/Orthopedic-Medical-Robots-Market-to-Global-Analysis-and-Forecasts.html. Accessed 25 Dec 2018.

  24. https://www.researchmoz.us/hip-and-knee-orthopedic-surgical-robots-market-shares-strategy-and-forecasts-worldwide-2016-to-2022-report.html. Accessed 12 Sept 2018.

  25. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H. 2000;214(1):129–40. https://doi.org/10.1243/0954411001535309.

    Article  CAS  PubMed  Google Scholar 

  26. Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A. Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg. 1995;1(5):266–72.

    Article  CAS  Google Scholar 

  27. Fankhauser H, Glauser D, Flury P, et al. Robot for CT-guided stereotactic neurosurgery. Stereotact Funct Neurosurg. 1994;63(1–4):93–8.

    Article  CAS  Google Scholar 

  28. Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014;20(6):636–43. https://doi.org/10.3171/2014.3.SPINE13714.

    Article  PubMed  Google Scholar 

  29. Maddahi Y, Zareinia K, Gan LS, Sutherland C, Lama S, Sutherland GR. Treatment of Glioma using neuroArm surgical system. Biomed Res Int. 2016;2016:9734512. https://doi.org/10.1155/2016/9734512.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Menon M, Tewari A, Baize B, Guillonneau B, Vallancien G. Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti urology institute experience. Urology. 2002;60:864–8.

    Article  Google Scholar 

  31. Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP® and ZEUS® to da Vinci®. J Visc Surg. 2011;148(5 Suppl):e3–8.

    Article  CAS  Google Scholar 

  32. Abbou CC, Hoznek A, Salomon L, et al. Remote laparoscopic radical prostatectomy carried out with a robot. Report of a case [in French]. Prog Urol. 2000;10:520–3.

    CAS  PubMed  Google Scholar 

  33. Oleynikov D. Robotic surgery. Surg Clin North Am. 2008;88:1121–30. https://doi.org/10.1016/j.suc.2008.05.012.

    Article  PubMed  Google Scholar 

  34. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32:1636–55. https://doi.org/10.1007/s00464-018-6079-2.

    Article  PubMed  Google Scholar 

  35. Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Hu JC. Use, costs and comparative effectiveness of robotic assisted, laparoscopic and open urological surgery. J Urol. 2012;187:1392–8.

    Article  Google Scholar 

  36. Trinh QD, Sammon J, Sun M, et al. Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: results from the nationwide inpatient sample. Eur Urol. 2012;61:679–85.

    Article  Google Scholar 

  37. Smith JA Jr, Herrell SD. Robotic-assisted laparoscopic prostatectomy: do minimally invasive approaches offer significant advantages? J Clin Oncol. 2005;23:8170–5.

    Article  Google Scholar 

  38. Skarecky DW. Robotic-assisted radical prostatectomy after the first decade: surgical evolution or new paradigm. ISRN Urol. 2013;2013:157379.

    PubMed  PubMed Central  Google Scholar 

  39. Jackson MA, Bellas N, Siegrist T, Haddock P, Staff I, Laudone V, Wagner JR. Experienced open vs early robotic-assisted laparoscopic radical prostatectomy: a 10-year prospective and retrospective comparison. Urology. 2016;91:111–8. https://doi.org/10.1016/j.urology.2015.12.072.

    Article  PubMed  Google Scholar 

  40. Benway BM, Bhayani SB, Rogers CG, et al. Robot-assisted partial nephrectomy versus laparoscopic partial nephrectomy for renal tumors: a multi-institutional analysis of perioperative outcomes. J Urol. 2009;182:866–72.

    Article  Google Scholar 

  41. Luciani LG, Chiodini S, Mattevi D, Cai T, Puglisi M, Mantovani W, Malossini G. Robotic-assisted partial nephrectomy provides better operative outcomes as compared to the laparoscopic and open approaches: results from a prospective cohort study. J Robot Surg. 2017;11(3):333–9. https://doi.org/10.1007/s11701-016-0660-2. Epub 2016 Dec 20

    Article  PubMed  Google Scholar 

  42. Kader AK, Richards KA, Krane LS, Pettus JA, Smith JJ, Hemal AK. Robot-assisted laparoscopic vs open radical cystectomy: comparison of complications and perioperative oncological outcomes in 200 patients. BJU Int. 2013;112:E290–4.

    Article  Google Scholar 

  43. Sathianathen NJ, Kalapara A, Frydenberg M, Lawrentschuk N, Weight CJ, Parekh D, Konety BR. Robotic-assisted radical cystectomy vs open radical cystectomy: systematic review and meta-analysis. J Urol. 2018. pii: S0022-5347(18)43984-5. https://doi.org/10.1016/j.juro.2018.10.006. [Epub ahead of print].

    Article  Google Scholar 

  44. Delaney CP, Lynch AC, Senagore AJ, Fazio VW. Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis Colon Rectum. 2003;46:1633–9.

    Article  Google Scholar 

  45. Pinar I, Fransgaard T, Thygesen LC, Gögenur I. Long-Term Outcomes of Robot-Assisted Surgery in Patients with Colorectal cancer. Ann Surg Oncol. 2018;25(13):3906–12. https://doi.org/10.1245/s10434-018-6862-2. Epub 2018 Oct 11

    Article  PubMed  Google Scholar 

  46. deSouza AL, Prasad LM, Park JJ, Marecik SJ, Blumetti J, Abcarian H. Robotic assistance in right hemicolectomy: is there a role? Dis Colon Rectum. 2010;53:1000–6.

    Article  Google Scholar 

  47. Wright JD, Ananth CV, Lewin SN, et al. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA. 2013;309:689–98.

    Article  CAS  Google Scholar 

  48. Liu H, Lu D, Wang L, Shi G, Song H, Clarke J. Robotic surgery for benign gynecological disease. Cochrane Database Syst Rev. 2012;(2):CD008978.

    Google Scholar 

  49. Swenson CW, Kamdar NS, Harris JA, Uppal S, Campbell DA Jr, Morgan DM. Comparison of robotic and other minimally invasive routes of hysterectomy for benign indications. Am J Obstet Gynecol. 2016;215(5):650.e1–8. https://doi.org/10.1016/j.ajog.2016.06.027. Epub 2016 Jun 22

    Article  Google Scholar 

  50. Tan A, Ashrafian H, Scott AJ, Mason SE, Harling L, Athanasiou T, Darzi A. Robotic surgery: disruptive innovation or unfulfilled promise? A systematic review and meta-analysis of the first 30 years. Surg Endosc. 2016;30(10):4330–52.

    Article  Google Scholar 

  51. Minjares-Granillo RO, Dimas BA, LeFave JJ, Haas EM. Robotic left-sided colorectal resection with natural orifice IntraCorporeal anastomosis with extraction of specimen: the NICE procedure. A pilot study of consecutive cases. Am J Surg. 2018. pii: S0002-9610(18)31234-0. https://doi.org/10.1016/j.amjsurg.2018.11.048.

    Article  Google Scholar 

  52. Loulmet D, Carpentier A, d’Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J Thorac Cardiovasc Surg. 1999;118:4–10.

    Article  CAS  Google Scholar 

  53. O’Sullivan KE, Kreaden US, Hebert AE, Eaton D, Redmond KC. A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy. Interact Cardiovasc Thorac Surg. 2018. https://doi.org/10.1093/icvts/ivy315.

    Article  Google Scholar 

  54. Wang A, Brennan JM, Zhang S, Jung SH, Yerokun B, Cox ML, Jacobs JP, Badhwar V, Suri RM, Thourani V, Halkos ME, Gammie JS, Gillinov AM, Smith PK, Glower D. Robotic mitral valve repair in older individuals: an analysis of the Society of Thoracic Surgeons database. Ann Thorac Surg. 2018;106(5):1388–93. https://doi.org/10.1016/j.athoracsur.2018.05.074. Epub 2018 Jun 30

    Article  PubMed  Google Scholar 

  55. Cerfolio RJ, Bryant AS, Skylizard L, Minnich DJ. Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms. J Thorac Cardiovasc Surg. 2011;142:740–6.

    Article  Google Scholar 

  56. Doulamis IP, Spartalis E, Machairas N, Schizas D, Patsouras D, Spartalis M, Tsilimigras DI, Moris D, Iliopoulos DC, Tzani A, Dimitroulis D, Nikiteas NI. The role of robotics in cardiac surgery: a systematic review. J Robot Surg. 2018. https://doi.org/10.1007/s11701-018-0875-5.

    Article  Google Scholar 

  57. Roizenblatt M, Grupenmacher AT, Belfort Junior R, Maia M, Gehlbach PL. Robot-assisted tremor control for performance enhancement of retinal microsurgeons. Br J Ophthalmol. 2018. pii: bjophthalmol-2018-313318. https://doi.org/10.1136/bjophthalmol-2018-313318.

  58. Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Ansò J, Mantokoudis G, Gerber N, Rathgeb C, Feldmann A, Wagner F, Scheidegger O, Kompis M, Weisstanner C, Zoka-Assadi M, Roesler K, Anschuetz L, Huth M, Weber S. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol. 2017;137(4):447–54. https://doi.org/10.1080/00016489.2017.1278573. Epub 2017 Feb 1

    Article  PubMed  Google Scholar 

  59. Ahn D, Sohn JH, Lee GJ, Hwang KH. Feasibility of using the retroauricular approach without endoscopic or robotic assistance for excision of benign neck masses. Head Neck. 2017;39(4):748–53. https://doi.org/10.1002/hed.24678. Epub 2017 Jan 9.

    Article  Google Scholar 

  60. Chai YJ, Lee KE, Youn Y-K. Can robotic thyroidectomy be performed safely in thyroid carcinoma patients? Endocrinol Metab (Seoul). 2014;29(3):226–32. https://doi.org/10.3803/EnM.2014.29.3.226.

    Article  Google Scholar 

  61. Russell JO, Noureldine SI, Al Khadem MG, et al. Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform. J Robot Surg. 2017. https://doi.org/10.1007/s11701-016-0661-1.

    Article  Google Scholar 

  62. Lang BH-H, Wong CKH, Tsang JS, Wong KP, Wan KY. A systematic review and meta-analysis evaluating completeness and outcomes of robotic thyroidectomy. Laryngoscope. 2015;125(2):509–18. https://doi.org/10.1002/lary.24946.

    Article  PubMed  Google Scholar 

  63. Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplasty. 2016. https://doi.org/10.1016/j.arth.2016.05.026.

    Article  Google Scholar 

  64. Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res. 2007;463:31–6.

    Google Scholar 

  65. Yang HY, Seon JK, Shin YJ, Lim HA, Song EK. Robotic total knee arthroplasty with a Cruciate-Retaining implant: a 10-year follow-up study. Clin Orthop Surg. 2017;9(2):169.

    Article  Google Scholar 

  66. Gilmour A, MacLean AD, Rowe PJ, Banger MS, Donnelly I, Jones BG, Blyth MJG. Robotic-arm-assisted vs conventional unicompartmental knee arthroplasty. The 2-year clinical outcomes of a randomized controlled trial. J Arthroplast. 2018;33(7S):S109–15. https://doi.org/10.1016/j.arth.2018.02.050. Epub 2018 Feb 21

    Article  Google Scholar 

  67. Liow MHL, Goh GS, Wong MK, Chin PL, Tay DK, Yeo SJ. Robotic-assisted total knee arthroplasty may lead to improvement in quality-of-life measures: a 2-year follow-up of a prospective randomized trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(9):2942.

    Article  Google Scholar 

  68. Bargar WL, Parise CA, Hankins A, Marlen NA, Campanelli V, Netravali NA. Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplast. 2018;33(3):810–4. https://doi.org/10.1016/j.arth.2017.09.066. Epub 2017 Oct 6

    Article  Google Scholar 

  69. Lonner JH, Fillingham YA. Pros and cons: a balanced view of robotics in knee arthroplasty. J Arthroplast. 2018;33:2007–13.

    Article  Google Scholar 

  70. Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA. The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am. 2011;93(17):1588.

    Article  Google Scholar 

  71. Parratte S, Pagnano MW, Trousdale RT, Berry DJ. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am. 2010;92(12):2143.

    Article  Google Scholar 

  72. https://blogs.dnvgl.com/software/2017/11/thinking-outside-of-the-box/

  73. Mangel M, Samaniego FJ. Abraham Wald’s work on aircraft survivability. J Am Stat Assoc. 1984;79:259–67.

    Article  Google Scholar 

  74. https://www.cnbc.com/2016/05/23/globe-newswire-orthopedic-surgical-and-surgical-assist-robots-market%2D%2Dhip-and-knee-orthopedic-surgical-robot-device-markets-will-reach-5.html

  75. Conditt MA, Bargar WL, Cobb JP, Dorr LD, Lonner JH. Current concepts in robotics for the treatment of joint disease. London, UK: Hindawi Publishing Corporation. 2013.

    Article  Google Scholar 

  76. Boylan M, Suchman K, Vigdorchik J, Slover J, Bosco J. Technology-assisted hip and knee arthroplasties: an analysis of utilization trends. J Arthroplast. 2017;33:1019e23.

    Google Scholar 

  77. MAKO Surgical Corp Fact Sheet. http://www.makosurgical.com/assets/files/Company/newsroom/Corporate_Fact_Sheet_208578r00.pdf; 2013. Accessed 7 Mar 2016.

  78. Navio data courtesy of Smith and Nephew, Memphis, TN.

    Google Scholar 

  79. Medical Device and Diagnostic Industry, 5 Mar 2015. http://www.mddionline.com

  80. Fiani B, Quadri SA, Farooqui M, Cathel A, Berman B, Noel J, Siddiqi J. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: a systemic review. Neurosurg Rev. https://doi.org/10.1007/s10143-018-0971-z.

  81. Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017;42:E2.

    Article  Google Scholar 

  82. https://mazorrobotics.com/en-us/resources/for-surgeons/faq-for-surgeons. Accessed 3 Jan 2019.

  83. OpenPR. Global Surgical Robots for the Spine Industry Trend, Growth, Shares, Strategy and Forecasts 2016 to 2022; 2017. https://www.openpr.com/news/442943/Global-Surgical-Robots-for-the-Spine-Industry-Trend-Growth-Shares-Strategy-and-Forecasts-2016-to-2022.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jess H. Lonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lonner, J.H., Fraser, J.F. (2019). A Brief History of Robotics in Surgery. In: Lonner, J. (eds) Robotics in Knee and Hip Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-16593-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16593-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16592-5

  • Online ISBN: 978-3-030-16593-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics