Skip to main content

Onset of Mechanochemical Pattern Formation in Poroviscoelastic Models of Active Cytoplasm

  • Chapter
  • First Online:
Biological Systems: Nonlinear Dynamics Approach

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 20))

  • 621 Accesses

Abstract

The cytoplasm of living cells is a complex structure formed by a fluid phase composed by water and small molecules and a second phase composed by the filaments of the cytoskeleton forming a viscoelastic gel. The interaction between the two phases gives rise to a poroviscoelastic structure which combines elastic and viscous responses to external stimuli. On the other hand, the cytoplasm is active, and molecular motors perform active stress. Different molecules regulate the activity of the motors. In the cytoplasm the biochemistry and the mechanics are interconnected, while motors and biochemical regulators are transported by flows in the two phases, the motors produce active stresses into the cytoskeleton and generate active flows. Here, we compare two active poroviscoelastic models with different viscoelastic properties, which can produce oscillations and the polarization of a living cell. The main features of the different mechanisms of pattern formation are studied by linear stability analysis of the homogeneous steady state and by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, S., Stange, M., Beta, C.: Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells. PLos ONE 13, e0201977 (2018)

    Article  Google Scholar 

  2. Alonso, S., Strachauer, U., Radszuweit, M., Bär, M., Hauser, M.J.: Oscillations and uniaxial mechanochemical waves in a model of an active poroelastic medium: application to deformation patterns in protoplasmic droplets of Physarum polycephalum. Phys. D 318, 58–69 (2016)

    Article  MathSciNet  Google Scholar 

  3. Alonso, S., Radszuweit, M., Engel, H., Bär, M.: Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids. J. Phys. D: Appl. Phys. 50, 434004 (2017)

    Article  Google Scholar 

  4. Alt, W., Dembo, M.: Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156, 207–228 (1999)

    Article  Google Scholar 

  5. Banerjee, S., Liverpool, T.B., Marchetti, M.C.: Generic phases of cross-linked active gels: relaxation, oscillation and contractility. Europhys. Lett. 96, 58004 (2011)

    Article  Google Scholar 

  6. Beta, C., Kruse, K.: Intracellular oscillations and waves. Annu. Rev. Condes. Matter Phys. 8 (2017)

    Article  Google Scholar 

  7. Bois, J.S., Jülicher, F., Grill, S.W.: Pattern formation in active fluids. Phys. Rev. Lett. 106, 028103 (2011)

    Article  Google Scholar 

  8. Bressloff, P.C., Newby, J.M.: Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135 (2013)

    Article  Google Scholar 

  9. Callan-Jones, A.C., Jlicher, F.: Hydrodynamics of active permeating gels. New J. Phys. 13, 093027 (2011)

    Article  Google Scholar 

  10. Charras, G.T., Mitchison, T.J., Mahadevan, L.: Animal cell hydraulics. J. Cell Sci. 122, 3233–3241 (2009)

    Article  Google Scholar 

  11. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  Google Scholar 

  12. Goehring, N.W., Grill, S.W.: Cell polarity: mechanochemical patterning. Trends Cell Biol. 23, 72–80 (2013)

    Article  Google Scholar 

  13. Howard, J., Grill, S.W., Bois, J.S.: Turing’s next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 392–398 (2011)

    Article  Google Scholar 

  14. Huber, F., Schnauss, J., Rönicke, S., Rauch, P., Müller, K., Fütterer, C., Käs, J.: Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv. Phys. 62, 1–112 (2013)

    Article  Google Scholar 

  15. Ingber, D.E., Wang, N., Stamenovic, D.: Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 046603 (2014)

    Article  MathSciNet  Google Scholar 

  16. Joanny, J.F., Kruse, K., Prost, J., Ramaswamy, S.: The actin cortex as an active wetting layer. Eur. Phys. J. E Soft Matter 36, 1–6 (2013)

    Article  Google Scholar 

  17. Karcher, H., Lammerding, J., Huang, H., Lee, R.T., Kamm, R.D., Kaazempur-Mofrad, M.R.: A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 85, 3336–3349 (2003)

    Article  Google Scholar 

  18. Keener, J.P., Sneyd, J.: Mathematical Physiology. Springer, New York (2009)

    Book  Google Scholar 

  19. Kollmannsberger, P., Fabry, B.: Linear and nonlinear rheology of living cells. Annu. Rev. Mater. Res. 41, 75–97 (2011)

    Article  Google Scholar 

  20. Kumar, K.V., Bois, J.S., Jülicher, F., Grill, S.W.: Pulsatory patterns in active fluids. Phys. Rev. Lett. 112, 208101 (2014)

    Article  Google Scholar 

  21. Lim, C.T., Zhou, E.H., Quek, S.T.: Mechanical models for living cells—a review. J. Biomech. 39, 195–216 (2006)

    Article  Google Scholar 

  22. Luby-Phelps, K.: Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221 (1999)

    Article  Google Scholar 

  23. MacKintosh, F.C., Levine, A.J.: Nonequilibrium mechanics and dynamics of motor-activated gels. Phys. Rev. Lett. 100, 018104 (2008)

    Article  Google Scholar 

  24. Mitchison, T.J., Charras, G.T., Mahadevan, L.: Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin. Cell Dev. Biol. 19, 215–223 (2008)

    Article  Google Scholar 

  25. Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A.R., Moulding, D.A., Thrasher, A.J., Stride, E., Mahadevan, L., Charras, G.T.: The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013)

    Article  Google Scholar 

  26. Mogilner, A., Allard, J., Wollman, R.: Cell polarity: quantitative modeling as a tool in cell biology. Science 336, 175–179 (2012)

    Article  MathSciNet  Google Scholar 

  27. Murray, J.D.: Mathematical Biology. II Spatial Models and Biomedical Applications. Springer, New York (2001)

    Google Scholar 

  28. Radszuweit, M., Alonso, S., Engel, H., Bär, M.: Intracellular mechanochemical waves in an active poroelastic model. Phys. Rev. Lett. 110, 138102 (2013)

    Article  Google Scholar 

  29. Radszuweit, M., Engel, H., Bär, M.: An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum. PloS One 9, e99220 (2014)

    Article  Google Scholar 

  30. Rodriguez, M.L., McGarry, P.J., Sniadecki, N.J.: Review on cell mechanics: experimental and modeling approaches. Appl. Mech. Rev. 65, 060801 (2013)

    Article  Google Scholar 

  31. Salbreux, G., Charras, G., Paluch, E.: Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012)

    Article  Google Scholar 

  32. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I acknowledge fruitful discussions with Markus Bär, Markus Radszuweit, Harald Engel and Marcus J.B. Hauser. I thank financial support by MINECO of Spain under the Ramon y Cajal program with the grant number RYC-2012-11265 and FIS2014-55365-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Alonso .

Editor information

Editors and Affiliations

Appendix

Appendix

For linear viscoelastic models the strain \(\varepsilon \) is the deformation by unit of length of the material and the stress \(\sigma \) is the tension of the material under deformation. For a solid, both quantities are linearly related \(\sigma _s = E \varepsilon _s\), by the elastic modulus E. Such dependence is equivalent to the Hooke law, therefore, the spring is a good phenomenological model for a solid. For a fluid the stress is only proportional to the velocity and, therefore, to the rate of change of the strain \(\sigma _{f} = \eta \partial _t \varepsilon _f\), where the constant of proportionality is the viscosity or viscous damp \(\eta \).

The strain \(\varepsilon \) corresponds to an infinitesimal change of the deformation field u and therefore \(\varepsilon = \partial _x u\) in the continuous models used in the chapter.

1.1 Stress-Strain Relation for the Kelvin–Voigt Model

For the Kelvin–Voigt model, a spring and a dampshot are coupled in parallel, see Fig. 2a. Strains of both branches are the same \(\varepsilon = \varepsilon _s = \varepsilon _f\) and the total stress \(\sigma \) is the addition of both stresses:

$$\begin{aligned} \sigma =\sigma _{s} + \sigma _{f} = E \varepsilon + \eta \partial _t \varepsilon ; \end{aligned}$$
(24)

which, for constant stress \(\sigma =\sigma _o\) gives rise to a saturation of the strain with a characteristic time \(\tau =\eta /E\):

$$\begin{aligned} \varepsilon (t) = \frac{\sigma _o}{E} \left( 1- e^{-t/\tau } \right) ; \end{aligned}$$
(25)

which produces to the dynamics shown in Fig. 2a.

1.2 Stress-Strain Relation for the Maxwell Model

For the Maxwell model, a spring and a dampshot are coupled in series, see Fig. 2b. While the stress is the same along the branch \(\sigma = \sigma _s = \sigma _{f}\), the individual displacements of the spring and the dashpot may be different. The total strain is the addition of both strains \(\varepsilon =\varepsilon _s + \varepsilon _f\), and its derivative gives rise to the relation \(\partial _t \varepsilon =\partial _t \varepsilon _s + \partial _t \varepsilon _f\). The stress-strain relation can be then obtained:

$$\begin{aligned} \frac{1}{\eta } \sigma + \frac{1}{E} \partial _t \sigma = \partial _t \varepsilon ; \end{aligned}$$
(26)

which, in the case of continuous rate of change of strain \(\partial _t \varepsilon ={\dot{\varepsilon }}_o\) produces a saturation of the stress with a characteristic time \(\tau =\eta /E\):

$$\begin{aligned} \sigma (t) = \eta {\dot{\varepsilon }}_o \left( 1- e^{-t/\tau } \right) ; \end{aligned}$$
(27)

which produces to the dynamics shown in Fig. 2b.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso, S. (2019). Onset of Mechanochemical Pattern Formation in Poroviscoelastic Models of Active Cytoplasm. In: Carballido-Landeira, J., Escribano, B. (eds) Biological Systems: Nonlinear Dynamics Approach. SEMA SIMAI Springer Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-16585-7_5

Download citation

Publish with us

Policies and ethics