Skip to main content

Electrophysiological Effects of Small Conductance Ca\(^{2+}\)-Activated K\(^+\) Channels in Atrial Myocytes

  • Chapter
  • First Online:
Biological Systems: Nonlinear Dynamics Approach

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 20))

  • 789 Accesses

Abstract

Atrial fibrillation (AF), a cardiac arrhythmia characterized by an abnormal heart rythm originated in the atria, is one of the most prevalent cardiac diseases. Although it may have diverse causes, genetic screening has shown that a percentage of pacients suffering of AF present a genetic variant related to disregulation of calcium-activated potassium (SK) channels. In this paper we review the main characteristics of these channels and use several mathematical models of human atrial cardiomyocytes to study their influence in the form of the atrial action potential. We show that an overexpression of SK channels results in decreased action potential duration and, under some circumstances, it may give rise to alternans, suggesting a pro-arrhythmic role of this current. This effect becomes more important at higher pacing rates. Nevertheless, we also find it to protect against spontaneous calcium release induced afterdepolarizations, acting in this case as an antiarrhythmic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelman, J.P., Maylie, J., Sah, P.: Small-conductance Ca2+-activated K+ channels: form and function. Annu. Rev. Physiol. 74, 245–269 (2012)

    Article  Google Scholar 

  2. Berkefeld, H., Fakler, B., Schulte, U.: Ca2+-activated K+ channels: from protein complexes to function. Physiol. Rev. 90(4), 1437–1459 (2010)

    Article  Google Scholar 

  3. Blatz, A.L., Magleby, K.L.: Single apamin-blocked ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323(1), 718–720 (1986)

    Article  Google Scholar 

  4. Carignani, C., Roncarati, R., Rimini, R., Terstappen, G.C.: Pharmacological and molecular characterisation of SK3 channels in the TE671 human medulloblastoma cell line. Brain Res. 939, 11–18 (2002)

    Article  Google Scholar 

  5. Cha, C.Y., Nakamura, Y., Himeno, Y., Wang, J., Fujimoto, S., Inagaki, N., Earm, Y.E., Noma, A.: Ionic mechanisms and Ca2+ dynamics underlying the glucose response of pancreatic \(\beta \) cells: a simulation study. J. Gen. Physiol. 138(1), 21–37 (2011)

    Article  Google Scholar 

  6. Chay, T.R.: Effects of extracellular calcium on electrical bursting and intracellular and luminal calcium oscillations in insulin secreting pancreatic beta-cells. Biophys. J. 73(3), 1673 (1997)

    Article  Google Scholar 

  7. Chen, W.-T., Chen, Y.-C., Lu, Y.-Y., Kao, Y.-H., Huang, J.-H., Lin, Y.-K., Chen, S.-A., Chen, Y.-J.: Apamin modulates electrophysiological characteristics of the pulmonary vein and the sinoatrial node. Eur. J. Clin. Investig. 43(9), 957–963 (2013)

    Article  Google Scholar 

  8. Chua, S.-K., Chang, P.-C., Maruyama, M., Turker, I., Shinohara, T., Shen, M.J., Chen, Z., Shen, C., Rubart-von der Lohe, M., Lopshire, J.C., et al.: Small-conductance calcium-activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles. Circ. Res. 108(8), 971–979 (2011)

    Article  Google Scholar 

  9. Commons, W.: File:sk channel.jpg—wikimedia commons, the free media repository (2018). Accessed 21 Jan 2019

    Google Scholar 

  10. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol.-Hear. Circ. Physiol. 275(1), H301–H321 (1998)

    Article  Google Scholar 

  11. Destexhe, A., Contreras, D., Sejnowski, T.J., Steriade, M.: A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol. 72(2), 803–818 (1994)

    Article  Google Scholar 

  12. Diness, J.G., Skibsbye, L., Jespersen, T., Bartels, E.D., Sørensen, U.S., Hansen, R.S., Grunnet, M.: Effects on atrial fibrillation in aged hypertensive rats by Ca2+-activated K+ channel inhibition. Hypertension 57(6), 1129–1135 (2011)

    Article  Google Scholar 

  13. Diness, J.G., Sørensen, U.S., Nissen, J.D., Al-Shahib, B., Jespersen, T., Grunnet, M., Hansen, R.S.: Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circulation: Arrhythmia Electrophysiol. 3(4), 380–390 (2010)

    Google Scholar 

  14. Ellinor, P.T., Lunetta, K.L., Glazer, N.L., Pfeufer, A., Alonso, A., Chung, M.K., Sinner, M.F., De Bakker, P.I., Mueller, M., Lubitz, S.A., et al.: Common variants in KCNN3 are associated with lone atrial fibrillation. Nat. Genet. 42(3), 240–244 (2010)

    Article  Google Scholar 

  15. Engel, J., Schultens, H.A., Schild, D.: Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophys. J. 76(3), 1310–1319 (1999)

    Article  Google Scholar 

  16. Fridlyand, L.E., Jacobson, D., Kuznetsov, A., Philipson, L.H.: A model of action potentials and fast Ca2+ dynamics in pancreatic \(\beta \)-cells. Biophys. J. 96(8), 3126–3139 (2009)

    Article  Google Scholar 

  17. Goforth, P., Bertram, R., Khan, F., Zhang, M., Sherman, A., Satin, L.: Calcium-activated k+ channels of mouse \(\beta \)-cells are controlled by both store and cytoplasmic ca2+ experimental and theoretical studies. J. Gen. Physiol. 120(3), 307–322 (2002)

    Article  Google Scholar 

  18. Grandi, E., Pandit, S.V., Voigt, N., Workman, A.J., Dobrev, D., Jalife, J., Bers, D.M.: Human atrial action potential and Ca2+ model. Circ. Res. 109, 1055–1066 (2011). https://doi.org/10.1161/CIRCRESAHA.111.253955

    Article  Google Scholar 

  19. Hille, B., et al.: Lon Channels Of Excitable Membranes, vol. 507. Sinauer Sunderland, MA (2001)

    Google Scholar 

  20. Hirschberg, B., Maylie, J., Adelman, J.P., Marrion, N.V.: Gating of recombinant small-conductance ca-activated K+ channels by calcium. J. Gen. Physiol. 111(4), 565–581 (1998)

    Article  Google Scholar 

  21. Hsueh, C.-H., Chang, P.-C., Hsieh, Y.-C., Reher, T., Chen, P.-S., Lin, S.-F.: Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium. Heart Rhythm 10(6), 891–898 (2013)

    Article  Google Scholar 

  22. Kennedy, M., Bers, D.M., Chiamvimonvat, N., Sato, D.: Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans. J. Physiol. (2016)

    Google Scholar 

  23. Kohler, M., Hirschberg, B., Bond, C., Kinzie, J.M., et al.: Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273(5282), 1709 (1996)

    Article  Google Scholar 

  24. Leinders, T., Vijverberg, H.: Ca2+ dependence of small Ca2+-activated K+ channels in cultured N1E-115 mouse neuroblastoma cells. Pflügers Arch. 422(3), 223–232 (1992)

    Article  Google Scholar 

  25. Li, N., Timofeyev, V., Tuteja, D., Xu, D., Lu, L., Zhang, Q., Zhang, Z., Singapuri, A., Albert, T.R., Rajagopal, A.V., et al.: Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J. Physiol. 587(5), 1087–1100 (2009)

    Article  Google Scholar 

  26. Ling, T.-Y., Wang, X.-L., Chai, Q., Lau, T.-W., Koestler, C.M., Park, S.J., Daly, R.C., Greason, K.L., Jen, J., Wu, L.-Q., et al.: Regulation of the SK3 channel by microRNA-499—potential role in atrial fibrillation. Heart Rhythm 10(7), 1001–1009 (2013)

    Article  Google Scholar 

  27. Lu, L., Zhang, Q., Timofeyev, V., Zhang, Z., Young, J.N., Shin, H.-S., Knowlton, A.A., Chiamvimonvat, N.: Molecular coupling of a Ca2+-activated K+ channel to l-type Ca2+ channels via \(\alpha \)-actinin2. Circ. Res. 100(1), 112–120 (2007)

    Article  Google Scholar 

  28. Lugo, C.A., Cantalapiedra, I.R., Peñaranda, A., Hove-Madsen, L., Echebarria, B.: Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: insights from a human atrial model. Am. J. Physiol.-Heart Circ. Physiol. 306(11), H1540–H1552 (2014). https://doi.org/10.1152/ajpheart.00515.2013

    Article  Google Scholar 

  29. Mears, D., Sheppard Jr., N., Atwater, I., Rojas, E., Bertram, R., Sherman, A.: Evidence that calcium release-activated current mediates the biphasic electrical activity of mouse pancreatic \(\beta \)-cells. J. Membr. Biol. 155(1), 47–59 (1997)

    Article  Google Scholar 

  30. Mu, Y.-H., Zhao, W.-C., Duan, P., Chen, Y., Wang, Q., Tu, H.-Y., Zhang, Q., et al.: RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes. PloS one 9(4), e94905 (2014)

    Article  Google Scholar 

  31. Nattel, S., Qi, X.Y.: Calcium-dependent potassium channels in the heart: clarity and confusion. Cardiovasc. Res. 101(2), 185–186 (2014). https://doi.org/10.1093/cvr/cvt340

    Article  Google Scholar 

  32. Nygren, A., Fiset, C., Firek, L., Clark, J., Lindblad, D., Clark, R., Giles, W.: Mathematical model of an adult human atrial cell. Cardiovasc. Res. 82(1), 63–81 (1998)

    Google Scholar 

  33. Olesen, M.S., Jabbari, J., Holst, A.G., Nielsen, J.B., Steinbrüchel, D.A., Jespersen, T., Haunsø, S., Svendsen, J.H.: Screening of KCNN3 in patients with early-onset lone atrial fibrillation. Europace 13(7), 963–967 (2011)

    Article  Google Scholar 

  34. Özgen, N., Dun, W., Sosunov, E.A., Anyukhovsky, E.P., Hirose, M., Duffy, H.S., Boyden, P.A., Rosen, M.R.: Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc. Res. 75(4), 758–769 (2007)

    Article  Google Scholar 

  35. Qi, X.-Y., Diness, J.G., Brundel, B.J., Zhou, X.-B., Naud, P., Wu, C.-T., Huang, H., Harada, M., Aflaki, M., Dobrev, D., et al.: Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Circulation 129(4), 430–440 (2014)

    Article  Google Scholar 

  36. Rafizadeh, S., Zhang, Z., Woltz, R.L., Kim, H.J., Myers, R.E., Lu, L., Tuteja, D., Singapuri, A., Bigdeli, A.A.Z., Harchache, S.B., et al.: Functional interaction with filamin a and intracellular Ca2+ enhance the surface membrane expression of a small-conductance Ca2+-activated K+ (SK2) channel. Proc. Natl. Acad. Sci. 111(27), 9989–9994 (2014)

    Article  Google Scholar 

  37. Skibsbye, L.: Antiarrhythmic principle of SK channel inhibition in atrial fibrillation. Channels 57, 672–681 (2011)

    Google Scholar 

  38. Skibsbye, L., Diness, J.G., Sørensen, U.S., Hansen, R.S., Grunnet, M.: The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca2+-activated K+ channels. J. Cardiovasc. Pharmacol. 57(6), 672–681 (2011)

    Article  Google Scholar 

  39. Skibsbye, L., Poulet, C., Diness, J.G., Bentzen, B.H., Yuan, L., Kappert, U., Matschke, K., Wettwer, E., Ravens, U., Grunnet, M., et al.: Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc. Res. 103(1), 156–167 (2014)

    Article  Google Scholar 

  40. Stocker, M.: Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5(10), 758–770 (2004)

    Article  Google Scholar 

  41. Terentyev, D., Rochira, J.A., Terentyeva, R., Roder, K., Koren, G., Li, W.: Sarcoplasmic reticulum Ca2+ release is both necessary and sufficient for SK channel activation in ventricular myocytes. Am. J. Physiol.-Heart Circ. Physiol. 306(5), H738–H746 (2014)

    Article  Google Scholar 

  42. Tucker, T.R., Fettiplace, R.: Monitoring calcium in turtle hair cells with a calcium-activated potassium channel. J. Physiol. 494(Pt 3), 613 (1996)

    Article  Google Scholar 

  43. Tuteja, D., Xu, D., Timofeyev, V., Lu, L., Sharma, D., Zhang, Z., Xu, Y., Nie, L., Vázquez, A.E., Young, J.N., et al.: Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am. J. Physiol.-Heart Circ. Physiol. 289(6), H2714–H2723 (2005)

    Article  Google Scholar 

  44. Vergara, C., Latorre, R., Marrion, N.V., Adelman, J.P.: Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8(3), 321–329 (1998)

    Article  Google Scholar 

  45. Wang, W., Watanabe, M., Nakamura, T., Kudo, Y., Ochi, R.: Properties and expression of Ca2+-activated K+ channels in H9c2 cells derived from rat ventricle. Am. J. Physiol.-Heart Circ. Physiol. 276(5), H1559–H1566 (1999)

    Article  Google Scholar 

  46. Xia, X.-M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J., Ishii, T., Hirschberg, B., Bond, C., Lutsenko, S., et al.: Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395(6701), 503–507 (1998)

    Article  Google Scholar 

  47. Xu, Y., Tuteja, D., Zhang, Z., Xu, D., Zhang, Y., Rodriguez, J., Nie, L., Tuxson, H.R., Young, J.N., Glatter, K.A., et al.: Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278(49), 49085–49094 (2003)

    Article  Google Scholar 

  48. Yu, T., Deng, C., Wu, R., Guo, H., Zheng, S., Yu, X., Shan, Z., Kuang, S., Lin, Q.: Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. Life Sci. 90(5), 219–227 (2012)

    Article  Google Scholar 

  49. Zhang, L., McBain, C.J.: Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J. Physiol. 488(Pt 3), 661 (1995)

    Article  Google Scholar 

  50. Zhang, X.-D., Lieu, D.K., Chiamvimonvat, N.: Small-conductance Ca2+-activated K+ channels and cardiac arrhythmias. Heart Rhythm 12(8), 1845–1851 (2015)

    Article  Google Scholar 

  51. Zhang, X.-D., Timofeyev, V., Li, N., Myers, R.E., Zhang, D., Singapuri, A., Lau, V.C., Bond, C.T., Adelman, J., Lieu, D.K., et al.: Critical roles of a small conductance Ca2+-activated K+ channel (SK3) in the repolarization process of atrial myocytes. Cardiovasc. Res. 101(2), 317–325 (2013). https://doi.org/10.1093/cvr/cvt262

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Hove-Madsen for fruitful discussions. The authors acknowledge financial support from Fundació La Marató de TV3 and from the Spanish Ministerio de Economía y Competitividad (MINECO) under grant numbers SAF2014-58286-C2-2-R, SAF2017-88019-C3-2-R and FIS2015-66503-C3-2P. IRC also acknowledges financial support from the Generalitat of Catalonia under Project 2009SGR878.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blas Echebarria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peñaranda, A., Cantalapiedra, I.R., Alvarez-Lacalle, E., Echebarria, B. (2019). Electrophysiological Effects of Small Conductance Ca\(^{2+}\)-Activated K\(^+\) Channels in Atrial Myocytes. In: Carballido-Landeira, J., Escribano, B. (eds) Biological Systems: Nonlinear Dynamics Approach. SEMA SIMAI Springer Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-16585-7_2

Download citation

Publish with us

Policies and ethics