Skip to main content

Characterization of Nanoparticles for Cosmetic Applications

  • Chapter
  • First Online:
Nanocosmetics

Abstract

Nanoparticles are tiny and cannot be seen by the naked eye. They possess different properties than macro-sized material and most of the well-established characterization methods for larger sized materials cannot be applied for nanomaterials. Hence, different techniques need to be used for a meaningful characterization of the nanosized material. This chapter will focus on the most important characterization methods that need to be applied to characterize and develop nanocarrier for cosmetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Particle Allen T. Particle size measurement. 4th ed. Berlin: Springer; 1990.

    Google Scholar 

  2. Anderson W, et al. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci. 2013;405:322–30.

    Article  CAS  Google Scholar 

  3. Calabretta M, et al. Analytical ultracentrifugation for characterizing nanocrystals and their bioconjugates. Nano Lett. 2005;5(5):963–7.

    Article  CAS  Google Scholar 

  4. Carney RP et al. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat Commun. 2011;2:335.

    Google Scholar 

  5. Kumar A, Dixit CK. Methods for characterization of nanoparticles. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Cambridge: Woodhead Publishing; 2017. p. 43–58.

    Chapter  Google Scholar 

  6. Müller RH. Colloidal carriers for controlled drug delivery and targeting: modification, characterization, and in Vivo distribution. Boca Raton: CRC Press; 1991.

    Google Scholar 

  7. Cho EJ, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.

    Article  CAS  Google Scholar 

  8. ISO 13320. ISO 13320: Particle size analysis—Laser diffraction methods. International Organization for Standardization; 2009.

    Google Scholar 

  9. ISO 22412. ISO 22412: Particle size analysis—Dynamic light scattering (DLS). International Organization for Standardization; 2017.

    Google Scholar 

  10. Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003;300(5616):82–6.

    Article  CAS  Google Scholar 

  11. Burrows ND, Penn RL. Cryogenic transmission electron microscopy: aqueous suspensions of nanoscale objects. Microsc Microanal Official J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can. 2013;19(6):1542–53.

    CAS  Google Scholar 

  12. Chen S, et al. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J Microsc. 2016;261(2):157–66.

    Article  CAS  Google Scholar 

  13. Tiede K et al. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Exposure Risk Assess. 2008; 25 (7):795–821.

    Article  CAS  Google Scholar 

  14. Woehl TJ et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy. 2013;127:53–63.

    Article  CAS  Google Scholar 

  15. Müller RH, Schuhmann R. Teilchengrößenmessung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft Stuttgart; 1996.

    Google Scholar 

  16. Keck CM. Particle size analysis of nanocrystals: improved analysis method. Int J Pharm. 2010;390(1):3–12.

    Article  CAS  Google Scholar 

  17. Keck CM, Müller RH. Size analysis of submicron particles by laser diffractometry–90% of the published measurements are false. Int J Pharm. 2008;355(1–2):150–63.

    Article  CAS  Google Scholar 

  18. Keck CM. Cyclosporine nanosuspensions—Optimised size characterisation & oral formulations. PhD thesis. Freie Universität Berlin; 2006.

    Google Scholar 

  19. Kübart Acar S, Keck CM. Laser diffractometry of nanoparticles: frequent pitfalls & overlooked opportunities. J Pharm Technol Drug Res. 2013;2:17.

    Article  Google Scholar 

  20. Keck CM. Partikelgrößenanalytik für Nanopartikel: Ein Kinderspiel oder doch eine verflixte Kiste? TechnoPharm. 2012;4:279–87.

    Google Scholar 

  21. Acar Kübart S. Menthol-beladene Lipidnanopartikel für Consumer-Care: Entwicklung & optimierte Charakterisierung. PhD thesis. Freie Universität Berlin; 2017.

    Google Scholar 

  22. Müller RH. Zetapotential und Partikelladung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft Stuttgart; 1996.

    Google Scholar 

  23. Al Shaal L, Müller RH, Keck CM. Preserving hesperetin nanosuspensions for dermal application. Pharmazie. 2010;65(2):86–92.

    CAS  PubMed  Google Scholar 

  24. Zhai X, et al. Nanocrystals of medium soluble actives–novel concept for improved dermal delivery and production strategy. Eur J Pharm Biopharm. 2014;470(1–2):141–50.

    CAS  Google Scholar 

  25. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1–2):202–9.

    Article  CAS  Google Scholar 

  26. Mishra PR, et al. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1–2):182–9.

    Article  CAS  Google Scholar 

  27. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm Official J Arbeitsgemeinschaft fur Pharma Verfahrenstechnik. 2011;78(1):1–9.

    Article  Google Scholar 

  28. Romero GB, et al. Industrial concentrates of dermal hesperidin smartCrystals®–production, characterization & long-term stability. Int J Pharm. 2015;482(1–2):54–60.

    Article  CAS  Google Scholar 

  29. Schwarz JC, et al. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm. 2013;447(1–2):213–7.

    Article  CAS  Google Scholar 

  30. Zhai X, et al. Dermal nanocrystals from medium soluble actives—physical stability and stability affecting parameters. Eur J Pharm Biopharm. 2014;88(1):85–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Keck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartmann, S.F., Eckert, R.W., Knoth, D., Keck, C.M. (2019). Characterization of Nanoparticles for Cosmetic Applications. In: Cornier, J., Keck, C., Van de Voorde, M. (eds) Nanocosmetics. Springer, Cham. https://doi.org/10.1007/978-3-030-16573-4_9

Download citation

Publish with us

Policies and ethics