Nanocosmetics pp 161-177 | Cite as

Nanocrystals for Dermal Application

  • Olga Pelikh
  • Steffen F. Hartmann
  • Abraham M. Abraham
  • Cornelia M. KeckEmail author


Dermal application of actives aims at delivering the active to the desired place of action, typically to the deeper layers of the skin. Passive diffusion is the main driving force of absorption into the skin, and a main prerequisite for effective passive diffusion is a sufficient amount of dissolved active within the formulation, because only dissolved molecules can be taken up. Many cosmetic and cosmeceutical actives possess poor solubility and can therefore not be delivered to the skin by classical formulation approaches. One of the modern and most powerful strategies to overcome poor solubility is the use of nanocrystals, which are addressed in this chapter.


Nanocrystals Nanosuspensions Poor solublity Noyes-Whitney equation Kelvin equation Dissolution rate Solubility 


  1. 1.
    Scheuplein RJ. Analysis of permeability data for the case of parallel diffusion pathways. Biophys J. 1966;6:1–17.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51:702–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv. 2007;59:1152–61.CrossRefGoogle Scholar
  4. 4.
    Norlén L. Skin barrier formation, The membrane folding model. J Invest Dermatol. 2001;117(4):823–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv. 2002;54:77–98.CrossRefGoogle Scholar
  6. 6.
    Pawar KR, Babu RJ. Lipid materials for topical and transdermal delivery of nanoemulsions. Crit Rev Ther Drug Carrier Syst. 2014;31:429–58.PubMedCrossRefGoogle Scholar
  7. 7.
    Junyaprasert VB, Teeranachaideekul V, Souto EB, et al. Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. Int J Pharm. 2009;377:207–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release. 2017;247:86–105.PubMedCrossRefGoogle Scholar
  9. 9.
    Müller RH, Gohla S, Keck CM. State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Keck CM, Müller RH. Nanodiamanten - Erhöhte Bioaktivitat. Labor & More. 2008;01(08):64–5.Google Scholar
  11. 11.
    Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Keck CM, Al Shaal L, Müller RH. SmartCrystals®—review of the second generation of drug nanocrystals. Handbook of materials for nanomedicine. In: Torchilin VP, Amiji MM, Editors. Pan stanford series on biomedical nanotechnology, London: Pan Stanford Publishing; 2010. p. 555–80.Google Scholar
  13. 13.
    Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1–3):151–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36(4–5):502–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Müller RH, Keck CM. Twenty years of drug nanocrystals. Where are we, and where do we go? Eur J Pharm Biopharm. 2012;80(1):1–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1–2):202–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Stegemann S, Leveiller F, Franchi D, et al. When poor solubility becomes an issue. From early stage to proof of concept. Eur J Pharm Sci. 2007;31(5):249–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Müller RH, Keck CM. Second generation of drug nanocrystals for delivery of poorly soluble drugs: SmartCrystal®-technology. Eur J Pharm Sci. 2008;34(1):20–1.CrossRefGoogle Scholar
  21. 21.
    Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–7.CrossRefGoogle Scholar
  22. 22.
    Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery. A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhai X, Lademann J, Keck CM, et al. Nanocrystals of medium soluble actives—novel concept for improved dermal delivery and production strategy. Int J Pharm. 2014;470(1–2):141–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Liversidge GG, Cundy KC, Bishop JF, et al. Surface modified drug nanoparticles. US Patent 5,145,684; (1992).Google Scholar
  25. 25.
    Michael JM, Thomas ER, Atkins J. Microencapsulated 3-piperidinyl-substituted 1,2-benzisoxazoles and 1,2-benzisothiazoles. US Patent 5,965,168; 1992.Google Scholar
  26. 26.
    Müller RH, Akkar A. Drug nanocrystals of poorly soluble drugs. Encyclopedia of Nanoscience and Nanotechnology (Nalwa HS, Editor), American Scientific Publishers; (2004). p. 627–38.Google Scholar
  27. 27.
    Mishra PR, Al Shaal L, Müller RH, et al. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1–2):182–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gassmann P, List M, Schweitzer A, Sucker H. Hydrosols—Alternatives for the parenteral application of poorly water soluble drugs. Eur J Pharm Biopharm. 1994;40:64–72.Google Scholar
  29. 29.
    List M, Sucker H. Pharmaceutical colloidal hydrosols for injection. GB Patent 2,200,048; 1988.Google Scholar
  30. 30.
    Auweter H, Bohn H, Heger R, et al. Precipitated water-insoluble colorants in colloid disperse form. US Patent 6,494,924; 2002.Google Scholar
  31. 31.
    Merisko-Liversidge E, Sarpotdar P, Bruno J, et al. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res. 1996;13(2):272–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Petersen RD. Nanocrystals for use in topical formulations and method of production thereof; 2006. PCT/EP2007/009943.Google Scholar
  33. 33.
    Scholz P, Arntjen A, Müller RH, et al. ARTcrystal® process for industrial nanocrystal production—optimization of the ART MICCRA® pre-milling step. Int J Pharm. 2014;465(1–2):388–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Scholz P, Keck CM. Flavonoid nanocrystals produced by ARTcrystal®-technology. Int J Pharm. 2015;482(1–2):27–37.PubMedCrossRefGoogle Scholar
  35. 35.
    Salazar J, Müller RH, Möschwitzer JP. Performance comparison of two novel combinative particle-size-reduction technologies. J Pharm Sci. 2013;102(5):1636–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Scholz P, Keck CM. Ibuprofen nanocrystals produced by ArtCrystal-technology. Pharm Ind. 2016;9(16):1340–54.Google Scholar
  37. 37.
    Salazar J, Ghanem A, Müller RH, et al. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm. 2012;81(1):82–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Keck CM. Cyclosporine nanosuspensions: optimised size characterisation & oral formulations, PhD-thesis, Freie Universität Berlin; 2006.Google Scholar
  39. 39.
    Kobierski S, Keck CM. Production of Hesperidin dermal nanocrystals by novel smartCrystal® combination technology, 10th European Workshop on Particulate Systems, Berlin/Germany, 30th–31th May; 2008.Google Scholar
  40. 40.
    Romero GB, Chen R, Keck CM, et al. Industrial concentrates of dermal hesperidin smartCrystals®–production, characterization & long-term stability. Int J Pharm. 2015;482(1–2):54–60.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Al Shaal L, Müller RH, Keck CM. Preserving hesperetin nanosuspensions for dermal application. Die Pharmazie. 2010;65(2):86–92.PubMedGoogle Scholar
  42. 42.
    Kobierski S, Ofori-Kwakye K, Müller RH, et al. Resveratrol nanosuspensions. Interaction of preservatives with nanocrystal production. Die Pharmazie. 2011;66(12):942–7.PubMedGoogle Scholar
  43. 43.
    Obeidat WM, Schwabe K, Müller RH, et al. Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2010;76(1):56–67.PubMedCrossRefGoogle Scholar
  44. 44.
    Rachmawati H, Rahma A, Al Shaal L, et al. Destabilization mechanism of ionic surfactant on curcumin nanocrystal against electrolytes. Sci Pharm. 2016;84(4):685–93.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kessler M, Ubeaud GJL. Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol. 2003;55:131–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Stahr P, Keck CM. Tailor-made nanocrystals for optimised dermal drug delivery, 5th Galenus Workshop, Berlin/Germany, 16th–18th November; 2016.Google Scholar
  47. 47.
    Braun A, Stahr P, Schäfer K-H, Keck CM. SmartCrystals® for neuroprotection, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 8th–10th December; 2016.Google Scholar
  48. 48.
    Al Shaal L, Mishra PR, Müller RH, et al. Nanosuspensions of hesperetin. Preparation and characterization. Die Pharmazie. 2014;69(3):173–82.PubMedGoogle Scholar
  49. 49.
    Hatahet T, Morille M, Hommoss A, et al. Dermal quercetin smartCrystals®. Formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm. 2016;102:51–63.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vidlářová L, Romero GB, Hanuš J, et al. Nanocrystals for dermal penetration enhancement—effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm. 2016;104:216–25.PubMedCrossRefGoogle Scholar
  51. 51.
    Shegokar R, Müller RH. Nanocrystals. Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Lohan SB, Bauersachs S, Ahlberg S, et al. Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur J Pharm Biopharm. 2015;89:201–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Abraham A. (in prep.), PlantCrystals for improved delivery of antioxidants, PhD-thesis, Philipps-Universität Marburg.Google Scholar
  54. 54.
    Griffin S, Tittikpina NK, Al-marby A, et al. Turning waste into value: nanosized natural plant materials of Solanum incanum L. and Pterocarpus erinaceus Poir with promising antimicrobial activities. Pharmaceutics. 2016;8(2):11.PubMedCentralCrossRefGoogle Scholar
  55. 55.
    Griffin S, Sarfraz M, Hartmann SF, et al. Resuspendable powders of lyophilized chalcogen particles with activity against microorganisms. Antioxidants (Basel). 2018;7(2):23.CrossRefGoogle Scholar
  56. 56.
    Griffin S, Sarfraz M, Farida V, et al. No time to waste organic waste. Nanosizing converts remains of food processing into refined materials. J Environ Manage. 2018;210:114–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Griffin S, Masood MI, Nasim MJ, et al. Natural nanoparticles. A particular matter inspired by nature. Antioxidants (Basel). 2017;7(1):3.CrossRefGoogle Scholar
  58. 58.
    Sinambela P, Egorov E, Löffler BM, et al. Anti-Aging rutin smartCrystals® for reduction of brown and red skin spots—an in vivo study, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 6th–8th December; 2012.Google Scholar
  59. 59.
    Keck CM, Müller RH, Gohla S. Nanokristalle - innovatives Formulierungsprinzip für schwerlösliche Anti-Aging Wirkstoffe, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 6th–8th December; 2007.Google Scholar
  60. 60.
    Sinambela P, Egorov E, Löffler BM, et al. Combination of rutin smartCrystals® and peptide-loaded liposomes for wrinkle reduction—an in vivo study, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 6th–8th December; 2012.Google Scholar
  61. 61.
    Gerst M, Rostamizadeh K, Arntjen A, et al. ARTCrystal®-technology for improved dermal penetration of rutin nanocrystals, nanocrystals for improved antioxidant capacity of flavonoids, NutriOx 2014: Nutrition and Ageing, Metz/France, 1th–3th October; 2014.Google Scholar
  62. 62.
    Keck CM, Pyo SM, Jin N, et al. Rutin smartCrystals®—most effective anti-oxidant activity & skin penetration, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 11th–13th December; 2014.Google Scholar
  63. 63.
    Jin N, Staufenbiel S, Keck CM, et al. SmartCrystals®—enhancement of drug penetration without penetration enhancer, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 11th–13th December; 2014.Google Scholar
  64. 64.
    Keck CM, Monsuur F, Höfer HH, et al. SmartPearls®—new dermal injection-like delivery system without use of a needle, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 11th–13th December; 2014.Google Scholar
  65. 65.
    Knauer J, Pyo SM, Keck CM, et al. Antioxidant activity of rutin—watersoluble derivatives vs. rutin smartCrystals®, Menopause, Andropause, Anti-Aging-Kongress, Vienna/Austria, 10th–12th December; 2015.Google Scholar
  66. 66.
    Pelikh O, Stahr P, Dietrich H, et al. Anti-aging actives for dermal application—size matters, Menopause, Andropause, Anti-Aging-Congress, Vienna/Austria, 6th–9th December; 2017.Google Scholar
  67. 67.
    Pelikh O, Stahr P, Dietrich H, et al. Anti-aging actives for dermal application—the vehicle is the key for efficacy, Menopause, Andropause, Anti-Aging-Congress, Vienna/Austria, 6th–9th December; 2017.Google Scholar
  68. 68.
    Pelikh O, Stahr P, Gerst M, et al. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm; 128:170–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Vogt A, Mandt N, Lademann J, et al. Follicular targeting—a promising tool in selective dermatotherapy. J Investig Dermatol Symp Proceed. 2005;10(3):252–5.CrossRefGoogle Scholar
  70. 70.
    Toll R, Jacobi U, Richter H, et al. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123(1):168–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Vogt A, Hadam S, Deckert I, et al. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines. Exp Dermatol. 2015;24(1):73–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Lademann J, Richter H, Schaefer UF, et al. Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19(4):232–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Blume-Peytavi U, Massoudy L, Patzelt A, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm. 2010;76(3):450–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Knorr F, Lademann J, Patzelt A, et al. Follicular transport route—research progress and future perspectives. Eur J Pharm Biopharm. 2009;71(2):173–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Patzelt A, Knorr F, Blume-Peytavi U, et al. Hair follicles, their disorders and their opportunities. Drug Discov Today: Dis Mech. 2008;5(2):173–81.CrossRefGoogle Scholar
  76. 76.
    Blume-Peytavi U, Vogt A. Human hair follicle. Reservoir function and selective targeting. Br J Dermatol. 2011;165(2):13–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Raber AS, Mittal A, Schäfer J, et al. Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm. J Control Release. 2014;179:25–32.PubMedCrossRefGoogle Scholar
  78. 78.
    Wosicka H, Cal K. Targeting to the hair follicles. Current status and potential. J Dermatol Sci. 2010;57(2):83–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Otberg N, Patzelt A, Rasulev U, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. 2008;65(4):488–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Lauterbach A, Müller-Goymann CC. Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream. Eur J Pharm Biopharm. 2014;88(3):614–24.PubMedCrossRefGoogle Scholar
  81. 81.
    Lademann J, Knorr F, Richter H, et al. Hair follicles—an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Germany. Skin Pharmacol Physiol. 2008;21(3):150–5.PubMedCrossRefGoogle Scholar
  82. 82.
    European Parliament. Regulation (EC) No 1223/2009 of the European parliament and of the council of 30 November 2009 on cosmetic products. Off J Eur Union: L 342/59; 2009.Google Scholar
  83. 83.
    Keck CM, Müller RH. Nanotoxicological classification system (NCS)—a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2013;84(3):445–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olga Pelikh
    • 1
  • Steffen F. Hartmann
    • 1
  • Abraham M. Abraham
    • 1
  • Cornelia M. Keck
    • 1
    Email author
  1. 1.Department of Pharmaceutics and BiopharmaceuticsPhilipps-Universität MarburgMarburgGermany

Personalised recommendations