Micelles and Nanoemulsions

  • Yves ChevalierEmail author
  • Marie-Alexandrine Bolzinger


Nanoemulsions and block copolymer micelles have specific features that are make them quite attractive for their application in cosmetic products. Both of them are organic nanoparticles having a liquid core. They are made from the same ingredients as classical emulsions, and their overall organization is also the same. Only the droplet size is smaller by a factor of 10 to 100. The chapter first gives a presentation of the physical chemistry of nanoemulsions and block copolymer micelles, then a discussion of the consequences of the small size to properties focusing on skin absorption. The sub-micron size brings about new properties such as accelerated skin delivery of active substances, absence of creaming in fluid products, immediate skin occlusion, transparency, and gloss after spreading. On the one hand, they are used as drug carriers for topical administration. On the other hand, fast occlusion of skin provides an immediate feeling which is a benefit in moisturizing products. Such properties are discussed with some help of studies carried out for pharmaceutical applications. Their current and prospective implementations in cosmetic technologies are addressed. Finally, the possible safety issues related to the size in the nano-scale are discussed on technical grounds.


Nanoemulsions Block copolymer micelles Spontaneous emulsification Phase inversion Skin absorption Topical drug delivery Nanotoxicology Formulation Cosmetic cream Cosmetic lotion 


  1. 1.
    Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics. J Drug Deliv Sci Technol. 2009;19:371–84.CrossRefGoogle Scholar
  2. 2.
    Briançon S, Chevalier Y, Bolzinger M-A. Biopharmaceutical evaluation of various dosage forms intended for caffeine topical delivery. In: Chilcott R, Brain K editors. Advances in dermatological sciences. Issues in Toxicology No 20, RSC Publishing, Cambridge; 2013, Chap 8. pp 88–100.Google Scholar
  3. 3.
    Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10:102–10.CrossRefGoogle Scholar
  4. 4.
    Riess G. Micellization of block copolymers. Prog Polym Sci. 2003;28:1107–70.CrossRefGoogle Scholar
  5. 5.
    Gohy J-F. Block copolymer micelles. Adv Polym Sci. 2005;190:65–136.CrossRefGoogle Scholar
  6. 6.
    Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev. 1995;16:141–55.CrossRefGoogle Scholar
  7. 7.
    Yukuyama MN, Ghisleni DDM, Pinto TJA, Bou-Chacra NA. Nanoemulsion: process selection and application in cosmetics—a review. Int J Cosmet Sci. 2016;38:13–24.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sonneville-Aubrun O, Simonnet J-T, L’Alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108–109:145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Baspinar Y, Keck CM, Borchert H-H. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm. 2010;383:201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Förster T, von Rybinski W, Wadle A. Influence of microemulsion phases on the preparation of fine-disperse emulsions. Adv Colloid Interface Sci. 1995;158:119–49.CrossRefGoogle Scholar
  11. 11.
    Izquierdo P, Esquena J, Tadros TF, Dederen JC. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir. 2004;20:6594–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010;5:1595–616.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25:47–58.CrossRefGoogle Scholar
  14. 14.
    Meyer J, Scheuermann R, Wenk HH. Combining convenience and sustainability: Simple processing of PEG-free nanoemulsions and classical emulsions. SOFW J. 2008;134:58–64.Google Scholar
  15. 15.
    Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329:166–72.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sadurní N, Solans C, Azemar N, García-Celma MJ. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci. 2005;26:438–45.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Klang V, Valenta C. Lecithin-based nanoemulsions. J Drug Deliv Technol. 2011;21:55–76.CrossRefGoogle Scholar
  18. 18.
    Katz LM, Dewan K, Bronaugh RL. Nanotechnology in cosmetics. Food Chem Toxicol. 2015;85:127–37.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Massignani M, Lomas H, Battaglia G. Polymersomes: a synthetic biological approach to encapsulation and delivery. Adv Polym Sci. 2010;229:115–54.CrossRefGoogle Scholar
  20. 20.
    Riley T, Heald CR, Stolnik S, Garnett MC, Illum L, Davis SS, King SM, Heenan RK, Purkiss SC, Barlow RJ, Gellert PR, Washington C. Core-shell structure of PLA-PEG nanoparticles used for drug delivery. Langmuir. 2003;19:8428–35.CrossRefGoogle Scholar
  21. 21.
    Zana R, Marques C, Johner A. Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in aqueous solution. Adv Colloid Interface Sci. 2006;123–126:345–51.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations. J Pharm Sci. 2008;97:1179–90.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kumar N, Ravikumar MNV, Domb AJ. Biodegradable block copolymers. Adv Drug Deliv Rev. 2001;53:23–44.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Heald CR, Stolnik S, Kujawinski KS, De Matteis C, Garnett MC, Illum L, Davis SS, Purkiss SC, Barlow RJ, Gellert PR. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir. 2002;18:3669–75.CrossRefGoogle Scholar
  25. 25.
    Patel SK, Lavasanifar A, Choi P. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PCL with increasing PCL content for two hydrophobic cucurbitacin drugs. Biomacromol. 2009;10:2584–91.CrossRefGoogle Scholar
  26. 26.
    Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci. 2012;17:156–65.CrossRefGoogle Scholar
  27. 27.
    Pflücker F, Hohenberg H, Hölzle E, Will T, Pfeiffer S, Wepf R, Diembeck W, Wenck H, Gers-Barlag H. The outermost stratum corneum layer is an effective barrier against dermal uptake of topically applied micronized titanium dioxide. Int J Cosmet Sci. 1999;21:399–411.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Monteiro-Riviere NA, Riviere JE. Interaction of nanomaterials with skin: aspects of absorption and biodistribution. Nanotoxicology. 2009;3:188–93.CrossRefGoogle Scholar
  29. 29.
    Monteiro-Riviere NA, Baroli B. Nanomaterial penetration. In: Monteiro-Riviere NA. editor. Toxicology of the skin, target organ toxicology series. New York: Informa Healthcare; 2010, Ch. 22. pp. 333–46.Google Scholar
  30. 30.
    Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J, Vogt A. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano. 2012;6:6829–42.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, Autran B, Sterry W, Blume-Peytavi U. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Investigative Dermatol. 2006;126:1316–22.CrossRefGoogle Scholar
  32. 32.
    Bolzinger M-A, Briançon S, Chevalier Y. Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. WIREs Nanomed Nanobiotechnol. 2011;3:463–78.CrossRefGoogle Scholar
  33. 33.
    Schaefer H, Watts F, Brod J, Illel B. Follicular penetration. In: Scott RC, Guy RH, editors. Prediction of percutaneous penetration, methods, measurements, modelling. London: IBC Technical Services; 1990. p. 163–73.Google Scholar
  34. 34.
    Illel B. Formulation for transfollicular drug administration: some recent advances. Crit Rev Therap Drug Carrier Syst. 1997;14:207–19.Google Scholar
  35. 35.
    Lekki J, Stachura Z, Dąbroś W, Stachura J, Menzel F, Reinert T, Butz T, Pallon J, Gontier E, Ynsa MD, Moretto P, Kertesz Z, Szikszai Z, Kiss AZ. On the follicular pathway of percutaneous uptake of nanoparticles: Ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res B. 2007;260:174–7.CrossRefGoogle Scholar
  36. 36.
    Frelichowska J, Bolzinger M-A, Valour J-P, Mouaziz H, Pelletier J, Chevalier Y. Pickering w/o emulsions: drug release and topical delivery. Int J Pharm. 2009;368:7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Marku D, Wahlgren M, Rayner M, Sjöö M, Timgren A. Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm. 2012;428:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, Büttemeyer R, Linscheid M, Liebsch M, Lademann J. Permeation of topically applied caffeine through human skin—a comparison of in vivo and in vitro data. Br J Clin Pharmacol. 2009;68:181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fox C. Stable o/w nanoemulsions for skin and other topics: literature findings. Cosmet Toiletries. 2010;125(3):30–8.Google Scholar
  40. 40.
    Rigano L, Lionetti N. In: Grumezescu A, editor. Nanobiomaterials in galenic formulations and cosmetics. Applications of nanobiomaterials, vol 10. Oxford: William Andrew—Applications of nanobiomaterialsElsevier; 2016. Chap 6. p. 121–48.Google Scholar
  41. 41.
    Meyer J, Polak G, Scheuermann R. Preparing PIC emulsions with a very fine particle size. Cosmet Toiletries. 2007;122(1):61–70.Google Scholar
  42. 42.
    Meyer J, Scheuermann R, Wenk HH. Combining convenience and sustainability: simple processing of PEG-free nanoemulsions and classical emulsions. SOFW J. 2008;6:58–64.Google Scholar
  43. 43.
    Heunnemann P, Prévost S, Grillo I, Marino CM, Meyer J, Gradzielski M. Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter. 2011;7:5697–710.CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Comini M, Lenzini M, Guglielmini G. Nanoemulsions comprising lipoaminoacids and monoglycerides, diglycerides and polyglycerides of fatty acids. Patent WO. 2006;2006087156:A1.Google Scholar
  46. 46.
    Tsutsumi H, Utsugi T, Hayashi S. Study on the occlusivity of oil films. J Soc Cosmet Chem. 1979;30:345–56.Google Scholar
  47. 47.
    Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T. Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage. J Pharm Sci. 2015;104:3510–23.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Campani V, Biondi M, Mayol L, Cilurzo F, Pitaro M, De Rosa G. Development of nanoemulsions for topical delivery of vitamin K1. Int J Pharm. 2016;511:170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Calderilla-Fajardo SB, Cazares-Delgadillo J, Villalobos-García R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R. Influence of sucrose esters in the in vivo penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsions and emulsions. Drug Develop Ind Pharm. 2006;32:107–13.CrossRefGoogle Scholar
  50. 50.
    Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q, Yan Z, Duan M. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res Lett. 2010;5:224–30.CrossRefGoogle Scholar
  52. 52.
    Rachmawati H, Budiputra DK, Mauludin R. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev Ind Pharm. 2015;41:560–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Alves MP, Escarrone AL, Santos M, Pohlmann AR, Guterres SS. Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm. 2007;341:215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Nam YS, Kim J-W, Park JY, Shim J, Lee JS, Han SH. Tocopheryl acetate nanoemulsions stabilized with lipid–polymer hybrid emulsifiers for effective skin delivery. Colloids Surf B. 2012;94:51–7.CrossRefGoogle Scholar
  55. 55.
    Lu W-C, Chiang B-H, Huang D-W, Li P-H. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification. Ultrason Sonochem. 2014;21:826–32.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Isailović T, Đorđević S, Marković B, Ranđdelović D, Cekić N, Lukić M, Pantelić I, Daniels R, Savić S. Biocompatible nanoemulsions for improved aceclofenac skin delivery: formulation approach using combined mixture-process experimental design. J Pharm Sci. 2016;105:308–23.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Klang V, Matsko N, Zimmermann A-M, Vojnikovic E, Valenta C. Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm. 2010;393:152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Klang V, Haberfeld S, Hartl A, Valenta C. Effect of γ-cyclodextrin on the in vitro skin permeation of a steroidal drug from nanoemulsions: Impact of experimental setup. Int J Pharm. 2012;423:535–42.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370:181–6.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Baspinar Y, Borchert H-H. Penetration and release studies of positively and negatively charged nanoemulsions—is there a benefit of the positive charge? Int J Pharm. 2012;430:247–52.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yilmaz E, Borchert H-H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—an in vivo study. Int J Pharm. 2006;307:232–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Youenang Piemi MP, Korner D, Benita S, Marty J-P. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J Control Release. 1999;58:177–87.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Reinhold U. A review of BF-200 ALA for the photodynamic treatment of mild-to-moderate actinic keratosis. Future Oncol. 2017;13:2413–28.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Schmitz L, Novak B, Hoeh A-K, Luebbert H, Dirschka T. Epidermal penetration and protoporphyrin IX formation of two different 5-aminolevulinic acid formulations in ex vivo human skin. Photodiagn Photodyn Ther. 2016;14:40–6.CrossRefGoogle Scholar
  65. 65.
    Maisch T, Santarelli F, Schreml S, Babilas P, Szeimies R-M. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exper Dermatol. 2010;19:e302–5.CrossRefGoogle Scholar
  66. 66.
    Primo FL, Rodrigues MA, Simioni AR, Bentley MVLB, Morais PC, Tedesco AC. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment. J Magn Magn Mater. 2008;320:e211–4.CrossRefGoogle Scholar
  67. 67.
    Primo FL, Michieleto L, Rodrigues MAM, Macaroff PP, Morais PC, Lacava ZGM, Bentley MVLB, Tedesco AC. Magnetic nanoemulsions as drug delivery system for Foscan®: Skin permeation and retention in vitro assays for topical application in photodynamic therapy (PDT) of skin cancer. J Magn Magn Mater. 2007;311:354–7.CrossRefGoogle Scholar
  68. 68.
    Spagnul A, Bouvier-Capely C, Phan G, Landon G, Tessier C, Suhard D, Rebière F, Agarande M, Fattal E. Ex vivo decrease in uranium diffusion through intact and excoriated pig ear skin by a calixarene nanoemulsion. Eur J Pharm Biopharm. 2011;79:258–67.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Spagnul A, Bouvier-Capely C, Phan G, Rebière F, Fattal E. A new formulation containing calixarene molecules as an emergency treatment of uranium skin contamination. Health Phys. 2010;99:430–4.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Spagnul A, Bouvier-Capely C, Phan G, Rebière F, Fattal E. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions. J Pharm Sci. 2010;99:1375–83.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Spagnul A, Bouvier-Capely C, Adam M, Phan G, Rebière F, Fattal E. Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion. Int J Pharm. 2010;398:179–84.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Shim J, Kang HS, Park W-S, Han S-H, Kim J, Chang I-S. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97:477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bachhav YG, Mondon K, Kalia YN, Gurny R, Möller M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Control Release. 2011;153:126–32.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Laredj-Bourezg F, Bolzinger M-A, Pelletier J, Valour J-P, Rovère M-R, Smatti B, Chevalier Y. Skin delivery by block copolymer micelles (block copolymer nanoparticles). Int J Pharm. 2015;496:1034–46.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hansen CM. Hansen solubility parameters. Boca Raton, FLA: A User’s Handbook. CRC Press; 2000.Google Scholar
  76. 76.
    Rastogi R, Anand S, Koul V. Flexible polymerosomes—an alternative vehicle for topical delivery. Colloids Surf B. 2009;72:161–6.CrossRefGoogle Scholar
  77. 77.
    Chausson M, Fluchère A-S, Landreau E, Aguni Y, Chevalier Y, Hamaide T, Abdul-Malak N, Bonnet I. Block copolymers of the type poly(caprolactone)-b-poly(ethylene oxide) for the preparation and stabilization of nanoemulsions. Int J Pharm. 2008;362:153–62.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Chevalier Y, Bolzinger M-A. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf A. 2013;439:23–34.CrossRefGoogle Scholar
  79. 79.
    Laredj-Bourezg F, Chevalier Y, Boyron O, Bolzinger M-A. Emulsions stabilized with solid organic particles. Colloids Surf A. 2012;413:252–9.CrossRefGoogle Scholar
  80. 80.
    Laredj-Bourezg F, Bolzinger M-A, Pelletier J, Chevalier Y. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery. Int J Pharm. 2017;531:134–42.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Laredj-Bourezg F, Bolzinger M-A, Pelletier J, Rovère M-R, Smatti B, Chevalier Y. Pickering emulsions stabilised by biodegradable particles offer a double level of controlled delivery of hydrophobic drugs. In: Chilcott R, Brain K, editors. Advances in dermatological sciences. Issues in Toxicology No 20. Cambridge: RSC Publishing; 2013, Chap 12. pp 143–56.Google Scholar
  82. 82.
    Kim BS, Yang MW, Lee KM, Kim CS. In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug. Drug Deliv. 2008;15:465–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sakeena MHF, Muthanna FA, Ghassan ZA, Kanakal MM, Elrashid SM, Munavvar AS, Azmin MN. Formulation and in vitro evaluation of ketoprofen in palm oil esters nanoemulsion for topical delivery. J Oleo Sci. 2010;5:223–8.CrossRefGoogle Scholar
  84. 84.
    Sakeena MHF, Elrashid SM, Muthanna FA, Ghassan ZA, Kanakal MM, Laila L, Munavvar AS, Azmin MN. Effect of limonene on permeation enhancement of ketoprofen in palm oil esters nanoemulsion. J Oleo Sci. 2010;5:395–400.Google Scholar
  85. 85.
    Sakeena MHF, Yam MF, Elrashid SM, Munavvar AS, Azmin MN. Anti-inflammatory and analgesic effects of ketoprofen in palm oil esters nanoemulsion. J Oleo Sci. 2010;5:667–71.Google Scholar
  86. 86.
    Elrashid SM, Azmin MN, Sakeena MH, Ghassan ZA, Muthanna FA, Munavvar AS. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int J Nanomed. 2011;6:2499–512.Google Scholar
  87. 87.
    Fontana MC, Rezer JFP, Coradini K, Leal DBR, Beck RCR. Improved efficacy in the treatment of contact dermatitis in rats by a dermatological nanomedicine containing clobetasol propionate. Eur J Pharm Biopharm. 2011;79:241–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Yu M, Ma H, Lei M, Li N, Tan F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur J Pharm Biopharm. 2014;88:92–103.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ngan CL, Basri M, Tripathy M, Karjiban RA, Abdul-Malek E. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. Eur J Pharm Sci. 2015;70:22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, Zhao W, Wu W, Chen Z, Li Y, Lu Y. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 2017;8:38214–26.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP, University Lyon 1, CNRS UMR 5007Villeurbanne CedexFrance

Personalised recommendations