Inorganic Nanoparticles in Cosmetics

  • T. P. Vinod
  • Raz JelinekEmail author


Inorganic nanomaterials of different chemical compositions and morphologies have been applied in cosmetic products due to their size- and shape-dependent properties which can improve the performance of the products. This chapter discusses the application of inorganic nanoparticles in cosmetic products with an emphasis on the characteristic features of nanoparticles suitable for cosmetic applications. In particular, applications of inorganic nanoparticles as UV filters and antimicrobial materials are discussed in detail with a basic overview of the fundamental scientific basis related to these applications. Types of nanoparticles used in commercial cosmetic products are enlisted, reflecting the range of applications and property modifications. Applications of inorganic nanoparticles in cosmetic formulations as active components and nanocarriers are also discussed along with relevant examples.


Nanoparticles Inorganic nanoparticles Cosmetics UV filters Sunscreens Antimicrobial nanoparticles 


  1. 1.
    Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chem Soc Rev. 2015;44(16):5793–805.CrossRefGoogle Scholar
  2. 2.
    Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Hull DR. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6(1):1769–80.CrossRefGoogle Scholar
  3. 3.
    Heiligtag FJ, Niederberger M. The fascinating world of nanoparticle research. Mater Today. 2013;16(7–8):262–71.CrossRefGoogle Scholar
  4. 4.
    Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci. 2012;57(5):875–910.CrossRefGoogle Scholar
  5. 5.
    Catalogue of nanomaterials used in cosmetic products placed on the market. Accessed 03 Nov 2017.
  6. 6.
    The Project on Emerging Nanotechnologies. Accessed 03 Nov 2017.
  7. 7.
    Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–102.CrossRefGoogle Scholar
  8. 8.
    Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.CrossRefGoogle Scholar
  9. 9.
    Walter P, Welcomme E, Hallégot P, Zaluzec NJ, Deeb C, Castaing J, Veyssière P, Bréniaux R, Lévêque JL, Tsoucaris G. Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett. 2006;6(10):2215–9.CrossRefGoogle Scholar
  10. 10.
    Epstein HA, Kielbassa A. Nanotechnology in cosmetic products. In: Bagchi, D, editor. Bio-nanotechnology: a revolution in food, biomedical and health sciences. United States: John Wiley & Sons; 2013; vol. 1, pp 414–23.Google Scholar
  11. 11.
    Singh TG, Sharma N. Nanobiomaterials in cosmetics: current status and future prospects A2—Grumezescu, Alexandru Mihai. In: Nanobiomaterials in galenic formulations and cosmetics, William Andrew Publishing; 2016; pp 149–74.Google Scholar
  12. 12.
    Petrazzuoli M. Advances in sunscreens. Curr Probl Dermatol. 2000;12(6):287–90.CrossRefGoogle Scholar
  13. 13.
    Levy SB. UV filters. In: Handbook of cosmetic science and technology, 4th ed. London: CRC Press; 2014.CrossRefGoogle Scholar
  14. 14.
    Dransfield GP. Inorganic sunscreens. Radiat Prot Dosim. 2000;91(1–3):271–3.CrossRefGoogle Scholar
  15. 15.
    Schlossman D, Shao Y. Inorganic ultraviolet filters. in sunscreens: regulations and commercial development. London: CRC Press; 2005.Google Scholar
  16. 16.
    Horvath H. Gustav Mie and the scattering and absorption of light by particles: historic developments and basics. J Quant Spectrosc Radiat Transfer. 2009;110(11):787–99.CrossRefGoogle Scholar
  17. 17.
    Sakamoto M, Okuda H, Futamata H, Sakai A, Iida M. Influence of particle size of titanium dioxide on UV-ray shielding property. J Jpn Soc Colour Mater. 1995;68(4):203–10.CrossRefGoogle Scholar
  18. 18.
    Stamatakis P, Palmer BR, Salzman GC, Bohren CF, Allen TB. Optimum particle size of titanium dioxide and zinc oxide for attenuation of ultraviolet radiation. J Coatings Technol. 1990;62(789):95–8.Google Scholar
  19. 19.
    Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta. 2007;360(3):794–802.CrossRefGoogle Scholar
  20. 20.
    Shen C, Turney TW, Piva TJ, Feltis BN, Wright PFA. Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells. Photochem Photobiol Sci. 2014;13(5):781–8.CrossRefGoogle Scholar
  21. 21.
    González S, Fernández-Lorente M, Gilaberte-Calzada Y. The latest on skin photoprotection. Clin Dermatol. 2008;26(6):614–26.CrossRefGoogle Scholar
  22. 22.
    Couteau C, Chammas R, Alami-El Boury S, Choquenet B, Paparis E, Coiffard LJM. Combination of UVA-filters and UVB-filters or inorganic UV filters—influence on the sun protection factor (SPF) and the PF-UVA determined by in vitro method. J Dermatol Sci. 2008;50(2):159–61.CrossRefGoogle Scholar
  23. 23.
    Jiménez Reinosa J, Leret P, Álvarez-Docio CM, del Campo A, Fernández JF. Enhancement of UV absorption behavior in ZnO–TiO2 composites. Boletín de la Sociedad Española de Cerámica y Vidrio. 2016;55(2):55–62.CrossRefGoogle Scholar
  24. 24.
    Yabe S, Sato T. Cerium oxide for sunscreen cosmetics. J Solid State Chem. 2003;171(1–2):7–11.CrossRefGoogle Scholar
  25. 25.
    Herrling T, Seifert M, Jung K. Cerium dioxide: Future UV-filter in sunscreen? SOFW J. 2013;139(5):10–4.Google Scholar
  26. 26.
    Truffault L, Winton B, Choquenet B, Andreazza C, Simmonard C, Devers T, Konstantinov K, Couteau C, Coiffard LJM. Cerium oxide based particles as possible alternative to ZnO in sunscreens: effect of the synthesis method on the photoprotection results. Mater Lett. 2012;68:357–60.CrossRefGoogle Scholar
  27. 27.
    De Lima JF, Serra OA. Cerium phosphate nanoparticles with low photocatalytic activity for UV light absorption application in photoprotection. Dyes Pigm. 2013;97(2):291–6.CrossRefGoogle Scholar
  28. 28.
    Wu W, Fan Y, Wu X, Liao S, Huang X, Li X. Preparation of nano-sized cerium and titanium pyrophosphates via solid-state reaction at room temperature. Rare Met. 2009;28(1):33–8.CrossRefGoogle Scholar
  29. 29.
    Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013;113(7):4708–54.CrossRefGoogle Scholar
  30. 30.
    Kedziora A, Gorzelańczyk K, Bugla-Płoskońska G. Positive and negative aspects of silver nanoparticles usage. Biol Int. 2013;53:67–76.Google Scholar
  31. 31.
    Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med. 2012;8(1):37–45.CrossRefGoogle Scholar
  32. 32.
    Kapuccinska, A.; Nowak, I., Silver nanoparticles as a challenge for modern cosmetology and pharmacology. In: Nanobiomaterials in galenic formulations and cosmetics: applications of nanobiomaterials; 2016; pp 391–417.Google Scholar
  33. 33.
    Lara HH, Ayala-Núñez NV, del Turrent LCI, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2010;26(4):615–21.CrossRefGoogle Scholar
  34. 34.
    Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.CrossRefGoogle Scholar
  35. 35.
    Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–83.CrossRefGoogle Scholar
  36. 36.
    Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590–605.CrossRefGoogle Scholar
  37. 37.
    Chen-Yang YW, Chen YT, Li CC, Yu HC, Chuang YC, Su JH, Lin YT. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater Lett. 2011;65(6):1060–2.CrossRefGoogle Scholar
  38. 38.
    Li CC, Chen YT, Lin YT, Sie SF, Chen-Yang YW. Mesoporous silica aerogel as a drug carrier for the enhancement of the sunscreen ability of benzophenone-3. Colloids Surf B Biointerfaces. 2014;115(Supplement C):191–6.CrossRefGoogle Scholar
  39. 39.
    Bolzinger MA, Briançon S, Chevalier Y. Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. Wiley Interdisc Rev Nanomed Nanobiotechnol. 2011;3(5):463–78.CrossRefGoogle Scholar
  40. 40.
    Choy J-H, Choi S-J, Oh J-M, Park T. Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci. 2007;36(1):122–32.CrossRefGoogle Scholar
  41. 41.
    Cécile B, Sonia A, Frédéric G. Silica- and perfluoro-based nanoparticular polymeric network for the skin protection against organophosphates. Mater Res Express. 2016;3(6):065019.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryCHRIST (Deemed to be University)BangaloreIndia
  2. 2.Department of ChemistryBen-Gurion University of the NegevBeer ShevaIsrael
  3. 3.Ilse Katz Institute for NanotechnologyBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations