Skip to main content

Production of Nanocosmetics

  • Chapter
  • First Online:
Nanocosmetics

Abstract

For successful product development and production of nanocosmetics, the interplay between material properties, formulation, process equipment, and process parameters must carefully be understood. Agglomeration or aggregation state of the starting material and its breakage behavior in combination with the desired product fineness define the necessary process equipment and its applied process parameters. Formulation with additives is crucial for the process performance as well as for product stability. Equipment should be operated in optimal parameter settings to combine the advantages of low energy consumption, high productivity, high product quality, and low product contamination. To realize complex nanocosmetic products, such as nanoparticle-loaded nanoemulsion droplets, process integration, and application of microsystem technology can assist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  1. Raj S, et al. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci. 2012;4(3):186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kaul S, et al. Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018;2018.

    Google Scholar 

  3. Schilde C, et al. Efficiency of different dispersing devices for dispersing nanosized silica and alumina. Powder Technol. 2011;207:353–61.

    Article  CAS  Google Scholar 

  4. Schilde C, Kwade A. Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation. J Mater Res. 2012;27(4):672–84.

    Article  CAS  Google Scholar 

  5. Schilde C, Breitung-Faes S, Kwade A. Dispersing and grinding of alumina nano particles by different stress mechanisms. Ceram Forum Int. 2007;84(13):12–17.

    Google Scholar 

  6. Möller A. Modelling the deagglomeration behavior of nanocrystalline Al2O3- and ZrO2-powders. Darmstadt: Technische Universität Darmstadt, Technische Universität Darmstadt; 2000.

    Google Scholar 

  7. Parfitt GD. Dispersion of powders in liquids. Elsevier Publishing; 1969.

    Google Scholar 

  8. Schilde C. Structure, mechanics and fracture of nanoparticulate aggregates. Braunschweig: Institute of Particle Technology, TU Braunschweig; 2012.

    Google Scholar 

  9. Schilde C, Kampen I, Kwade A. Dispersion kinetics of nano-sized particles for different dispersing machines. Chem Eng Sci. 2010;65(11):3518–27.

    Article  CAS  Google Scholar 

  10. Schilde C, et al. Effect of fluid-particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Compos Sci Technol. 2010;70(4):657–63.

    Article  CAS  Google Scholar 

  11. Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond. 1805;95:65–87.

    Article  Google Scholar 

  12. Buckton G, Newton JM. Assessment of the wettability and surface energy of pharmaceutical powder. Int J Pharm. 1986;47:121–8.

    Article  Google Scholar 

  13. Stiller S. Pickering-Emulsionen auf Basis anorganischer UV-filter. Braunschweig: Institut für Pharmazeutische Technologie, TU Braunschweig; 2003.

    Google Scholar 

  14. Fuji M, et al. Effect of wettability on adhesion forces between silica particles evaluated by atomic force microscopy measurement as a function of relative humidity. Langmuir. 1999;15:4584–9.

    Article  CAS  Google Scholar 

  15. Rumpf H. Die Einzelkornbeanspruchung als Grundlage einer technischen Zerkleinerungswissenschaft. Chem Ing Tec. 1965;37:187–202.

    Article  CAS  Google Scholar 

  16. Schilde C, Beinert S, Kwade A. Comparison of the micromechanical aggregate properties of nanostructured aggregates with the stress conditions during stirred media milling. Chem Eng Sci. 2011;66:4943–52.

    Article  CAS  Google Scholar 

  17. Kwade A. Physical model to describe and select comminution and dispersion processes. Chem Ing Tec. 2001;73(6):703.

    Article  Google Scholar 

  18. Kwade A. A stressing model for the description and optimization of grinding processes. Chem Eng Technol. 2003;26(2):199–205.

    Article  CAS  Google Scholar 

  19. Rumpf H, Raasch J. Desagglomeration in Strömungen. In: 1. Europ. Symp. Zerkleinern 10.-13.04.1962. 1962. Frankfurt a. M: Verlag Chemie, Weinheim und VDI-Verlag, Düsseldorf.

    Google Scholar 

  20. Kolmogorov AN. Die lokale Struktur der Turbulenz in einer inkompressiblen zähen Flüssigkeit bei sehr großen Reynoldsschen Zahlen. Sammelband zur statischen Theorie der turbulenz 1958, Berlin: Akademie Verlag. p. 71–6.

    Google Scholar 

  21. Rumpf H. Grundlagen und Methoden des Granulierens. Chem Ing Tec. 1958;30(3):144–58.

    Article  CAS  Google Scholar 

  22. Zellmer S, et al. Influence of surface modification on the micromechanical properties of spray-dried silica aggregates. J Colloid Interface Sci. 2015;464:183–90.

    Google Scholar 

  23. Knieke C, et al. Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol. 2010;33(9):1401–11.

    Article  CAS  Google Scholar 

  24. Schilde C, Breitung-Faes S, Kwade A. Grinding kinetics of nano-sized particles for different electrostatical stabilizing acids in a stirred media mill. Powder Technol. 2013;235:1008–16.

    Article  CAS  Google Scholar 

  25. Sauter C, et al. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem. 2008;15(4):517–23.

    Article  CAS  PubMed  Google Scholar 

  26. Kim YG, et al. Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells. Nano Lett. 2003;3(4):523–5.

    Article  CAS  Google Scholar 

  27. Biedermann A, Henzler H-J. Beanspruchung von Partikeln in Rührreaktoren. Chem Ing Tec. 1994;66(2):209–11.

    Article  CAS  Google Scholar 

  28. Winkler J. Nanopigmente dispergieren. Farbe und Lack. 2006;2:35–9.

    Google Scholar 

  29. Bittmann B, Haupert F, Schlarp AK. Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason Sonochem. 2009;16:622–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mende S. Mechanische Erzeugung von Nanopartikeln in Rührwerkskugelmühlen. Braunscheig: TU Braunschweig; 2004.

    Google Scholar 

  31. Sommer MM. Mechanical production of nanoparticles in stirred media mills. Technische Fakultät der Universität Nürnberg-Erlangen; 2007.

    Google Scholar 

  32. Derjaguin BV, Landau LD. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica U.R.S.S., 1941;14:633–62.

    Google Scholar 

  33. Verwey EJW, Overbeek JTG. Theory of stability of loyophobic colloids: the interaction of sol particles having an electrical double layer. New York: Elsevier; 1948.

    Google Scholar 

  34. Segets D, et al. Experimental and theoretical studies of the colloidal stability of nanoparticles—a general interpretation based on stability maps. ACS Nano. 2011;5(6):4658–69.

    Article  CAS  PubMed  Google Scholar 

  35. Reindl A, Peukert W. Intrinsically stable dispersions of silicon nanoparticles. J Colloid Interface Sci. 2008;325:173–8.

    Article  CAS  PubMed  Google Scholar 

  36. Stenger F, et al. Nanomilling in stirred media mills. Chem Eng Sci. 2005;60(16):4557–65.

    Article  CAS  Google Scholar 

  37. Mende S, et al. Production of sub-micron particles by wet comminution in stirred media mills. J Mater Sci. 2004;39:5223–6.

    Article  CAS  Google Scholar 

  38. Mende S, et al. Mechanical production and stabilization of submicron particles in stirred media mills. Powder Technol. 2003;132:64–73.

    Google Scholar 

  39. Barth N, Schilde C, Kwade A. Influence of electrostatic particle interactions on the properties of particulate coatings of titanium dioxide. J Colloid Interface Sci. 2014;420:80–7.

    Article  CAS  PubMed  Google Scholar 

  40. Evans R, Napper DH. Steric stabilization I—comparison of theories with experiment. Kolloid-Zeitschrift und Zeitschrift für Polymere. 1972;251(6):409–14.

    Article  Google Scholar 

  41. Evans R, Napper DH. Steric stabilization II—a generalization of Fischer’s solvency theory. Kolloid-Zeitschrift und Zeitschrift für Polymere. 1972;251(5):329–36.

    Article  Google Scholar 

  42. Ali A, et al. Nanoemulsion: an advanced vehicle for efficient drug delivery. Drug Res (Stuttg). 2017;67(11):617–31.

    Article  CAS  Google Scholar 

  43. Jintapattanakit A. Preparation of nanoemulsions by phase inversion temperature (PIT). Pharm Sci Asia. 2018;42(1):1–12.

    Article  CAS  Google Scholar 

  44. Yukuyama MN, et al. Nanoemulsion: process selection and application in cosmetics–a review. Int J Cosmet Sci. 2016;38(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  45. Villalobos-Hernandez JR, Muller-Goymann CC. Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. Eur J Pharm Biopharm. 2005;60(1):113–22.

    Article  CAS  PubMed  Google Scholar 

  46. Villalobos-Hernandez JR, Muller-Goymann CC. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles. Eur J Pharm Biopharm. 2007;65(1):122–5.

    Article  CAS  PubMed  Google Scholar 

  47. Richter C, et al. Innovative process chain for the development of wear resistant 3D metal microsystems. Microelectron Eng. 2013;110:392–7.

    Article  CAS  Google Scholar 

  48. Finke JH, et al. Modular overall microsystem for the integrated production and loading of solid lipid nanoparticles, in mikroPART—Microsystems for Particulate Life Science Products (Concluding results of the DFG Research Group FOR 856) In: Kwade A, Kampen I, Finke JH, editors. Braunschweig; 2014. p. CDCP1-6.

    Google Scholar 

  49. Finke JH, et al. The influence of customized geometries and process parameters on nanoemulsion and solid lipid nanoparticle production in microsystems. Chem Eng J. 2012;209:126–37.

    Article  CAS  Google Scholar 

  50. Gothsch T, et al. Effect of microchannel geometry on high-pressure dispersion and emulsification. Chem Eng Technol. 2011;34(3):335–43.

    Article  CAS  Google Scholar 

  51. Beinert S, Gothsch T, Kwade A. Numerical evaluation of flow fields and stresses acting on agglomerates dispersed in high-pressure microsystems. Chem Eng Technol. 2012;35(11):1922–30.

    Article  CAS  Google Scholar 

  52. Beinert S, Gothsch T, Kwade A. Numerical evaluation of stresses acting on particles in high-pressure microsystems using a Reynolds stress model. Chem Eng Sci. 2015;123:197–206.

    Article  CAS  Google Scholar 

  53. Gothsch T, et al. High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid Nanofluid. 2014;18(1):121–30.

    Article  CAS  Google Scholar 

  54. Gothsch T, et al. Effect of cavitation on dispersion and emulsification process in high-pressure microsystems (HPMS). Chem Eng Sci. 2016;144:239–48.

    Article  CAS  Google Scholar 

  55. Finke JH, et al. Multiple orifices in customized microsystem high-pressure emulsification: the impact of design and counter pressure on homogenization efficiency. Chem Eng J. 2014;248:107–21.

    Article  CAS  Google Scholar 

  56. Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm. 2005;61(1–2):77–86.

    Article  CAS  PubMed  Google Scholar 

  57. Ullmanns Encyclopedia of Industrial Chemistry, Dextran. 6 ed. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  58. Breitung-Faes S, Kwade A. Prediction of energy effective grinding conditions. Miner Eng. 2013;43–44:36–43.

    Article  CAS  Google Scholar 

  59. Breitung-Faes S, Kwade A. Production of transparent suspensions by real grinding of fused corundum. Powder Technol. 2011;212(3):383–9.

    Article  CAS  Google Scholar 

  60. Breitung-Faes S, Kwade A. Use of an enhanced stress model for the optimization of wet stirred media milling processes. Chem Eng Technol. 2014;37(5):1–9.

    Article  CAS  Google Scholar 

  61. Kwade A. A stressing model for the description and optimization of grinding processes. Chem Eng Technol. 2003;26(2):199–205.

    Article  CAS  Google Scholar 

  62. Kwade A, Blecher L, Schwedes J. Motion and stress intensity of grinding beads in a stirred media mill part II: stress intensity and its effect on comminution. Powder Technol. 1996;86:69–76.

    Article  CAS  Google Scholar 

  63. Kwade A, Schwedes J. Breaking charakteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol. 2002;122:109–21.

    Article  CAS  Google Scholar 

  64. Flach F, et al. Impact of formulation and operating parameters on particle size and grinding media wear in wet media milling of organic compounds—a case study for pyrene. Adv Powder Technol. 2016;27(6):2507–19.

    Article  CAS  Google Scholar 

  65. Bitterlich A, et al. Challenges in nanogrinding of active pharmaceutical ingredients. Chem Eng Technol. 2014;37(5):840–6.

    Article  CAS  Google Scholar 

  66. Steiner D, et al. Breakage, temperature dependency and contamination of lactose during ball milling in ethanol. Adv Powder Technol. 2016;27(4):1700–9.

    Article  CAS  Google Scholar 

  67. Kumar S, Burgess DJ. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Int J Pharm. 2014;466(1):223–32.

    CAS  PubMed  Google Scholar 

  68. Flach F, Breitung-Faes S, Kwade A. Grinding media wear induced agglomeration of electrosteric stabilized particles. Colloids Surf, A: Physicochem Eng Asp. 2017;522:140–51.

    Article  CAS  Google Scholar 

  69. Knieke C, et al. Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol. 2010;33(9):1401–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Kwade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schilde, C., Finke, J.H., Breitung-Faes, S., Flach, F., Kwade, A. (2019). Production of Nanocosmetics. In: Cornier, J., Keck, C., Van de Voorde, M. (eds) Nanocosmetics. Springer, Cham. https://doi.org/10.1007/978-3-030-16573-4_13

Download citation

Publish with us

Policies and ethics