Skip to main content

Regulation of Food Intake After Surgery and the Gut-Brain Axis

  • Chapter
  • First Online:
Nutritional Support after Gastrointestinal Surgery

Abstract

The metabolic and physiological changes associated with surgery are well established. There is a transient physiological state of impaired glucose tolerance (known as insulin resistance) along with the release of stress hormones and inflammatory mediators (cytokines, cortisol, catecholamines, glucagon) [1–3]. This results in attenuation of the anabolic effects of insulin, impairment of glucose uptake in peripheral tissues (e.g. skeletal muscle and adipose tissue) and enhancement of hepatic gluconeogenesis resulting in hyperglycaemia [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nygren J, Thorell A, Efendic S, et al. Site of insulin resistance after surgery: the contribution of hypocaloric nutrition and bed rest. Clin Sci (Lond). 1997;93:137–46.

    Article  CAS  Google Scholar 

  2. Thorell A, Loftenius A, Andersson B, et al. Postoperative insulin resistance and circulating concentrations of stress hormones and cytokines. Clin Nutr. 1996;15:75–9.

    Article  CAS  Google Scholar 

  3. Akintola DF, Sampson B, Burrin J, et al. Changes in plasma metallothionein-1, interleukin-6, and C-reactive protein in patients after elective surgery. Clin Chem. 1997;43:845–7.

    CAS  PubMed  Google Scholar 

  4. Bisgaard T, Kristiansen VB, Hjortso NC, et al. Randomized clinical trial comparing an oral carbohydrate beverage with placebo before laparoscopic cholecystectomy. Br J Surg. 2004;91:151–8.

    Article  CAS  Google Scholar 

  5. Kuppinger D, Hartl WH, Bertok M, et al. Nutritional screening for risk prediction in patients scheduled for abdominal operations. Br J Surg. 2012;99:728–37.

    Article  CAS  Google Scholar 

  6. Perry B, Wang Y. Appetite regulation and weight control: the role of gut hormones. Nutr Diabetes. 2012;2:e26.

    Article  CAS  Google Scholar 

  7. Yu JH, Kim MS. Molecular mechanisms of appetite regulation. Diabetes Metab J. 2012;36:391–8.

    Article  Google Scholar 

  8. Langley J. The autonomic nervous system. Cambridge: Part I; 1921.

    Google Scholar 

  9. Janig W, Morrison JF. Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res. 1986;67:87–114.

    Article  CAS  Google Scholar 

  10. Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav. 2004;81:249–73.

    Article  CAS  Google Scholar 

  11. Wang GJ, Yang J, Volkow ND, et al. Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci U S A. 2006;103:15641–5.

    Article  CAS  Google Scholar 

  12. Niijima A. Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. J Nutr. 2000;130:971S–3S.

    Article  CAS  Google Scholar 

  13. Tsurugizawa T, Uematsu A, Nakamura E, et al. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut-brain axis. Gastroenterology. 2009;137:262–73.

    Article  Google Scholar 

  14. Ryan AT, Feinle-Bisset C, Kallas A, et al. Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. Clin Nutr. 2012;96(3):474–82.

    CAS  Google Scholar 

  15. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  Google Scholar 

  16. Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428:569–74.

    Article  CAS  Google Scholar 

  17. Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2012;63:123–32.

    Article  Google Scholar 

  18. Knight ZA, Hannan KS, Greenberg ML, et al. Hyperleptinamia is required for the development of leptin resistance. PLoS One. 2010;5:e11376.

    Article  Google Scholar 

  19. Nakamura Y, Ueshima H, Okuda N, et al. Serum leptin and total dietary energy intake: the INTERLIPID study. Eur J Nutr. 2012;52(6):1641–8.

    Article  Google Scholar 

  20. Gong Y, Xu L, Guo F, et al. Effects of ghrelin on gastric distension sensitive neurons and gastric motility in the lateral septum and arcuate nucleus regulation. J Gastroenterol. 2014;49(2):219–30.

    Article  CAS  Google Scholar 

  21. Hassouna R, Labarthe A, Zizzari P, et al. Actions of agonists and antagonists of the ghrelin/GHS-R pathway on GH secretion, appetite, and cFos activity. Front Endocrinol (Lausanne). 2013;4:25.

    Article  CAS  Google Scholar 

  22. Miyazaki T, Tanaka N, Hirai H, et al. Ghrelin level and body weight loss after esophagectomy for esophageal cancer. J Surg Res. 2012;176:74–8.

    Article  CAS  Google Scholar 

  23. Gibbons C, Caudwell P, Finlayson G, et al. Comparison of postprandial profiles of ghrelin, active GLP-1, and total PYY to meals varying in fat and carbohydrate and their association with hunger and the phases of satiety. J Clin Endocrinol Metab. 2013;98(5):E847–55.

    Article  Google Scholar 

  24. Falken Y, Webb DL. Abraham-Nordling et al. Intravenous ghrelin accelerates postoperative gastric emptying and time to first bowel movement in humans. Neurogastroenterol Motil. 2013;25(6):474–e364.

    Article  CAS  Google Scholar 

  25. Air E, Benoit SC, Blake Smith KA, et al. Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol Biochem Behav. 2002;72(1-2):423–9.

    Article  CAS  Google Scholar 

  26. Horakova D, Stejskal D, Pastucha D, et al. Potential markers of insulin resistance in healthy vs obese and overweight subjects. Biomed Pap Med Fac Univ Palazky Olomouc Czech Repub. 2010;154:245–9.

    Article  CAS  Google Scholar 

  27. Begg DP, Mul JD, Liu M, et al. Reversal of diet-induced obesity increases insulin transport into cerebrospinal fluid and restores sensitivity to the anorexic action of central insulin in male rats. Endocrinology. 2013;154:1047–54.

    Article  CAS  Google Scholar 

  28. Luttikhold J, Oosting A, van den Braak CC, et al. Preservation of the gut by preoperative carbohydrate loading improves postoperative food intake. Clin Nutr. 2012;32(4):556–61.

    Article  Google Scholar 

  29. Kragsbjerg P, Holmberg H, Lee IC, et al. Adult-onset PYY overexpression in mice reduces food intake and increases lipogenic capacity. Neuropeptides. 2012;46:173–82.

    Article  Google Scholar 

  30. Mochizuki K, Misaki Y, Miyauchi R, et al. A higher rate of eating is associated with higher circulating interleukin-1beta concentrations in Japanese men not being treated for metabolic diseases. Nutrition. 2012;28:978–83.

    Article  CAS  Google Scholar 

  31. Misaki Y, Miyauchi R, Mochikuzi K, et al. Plasma interleukin-1beta concentrations are closely associated with fasting blood glucose levels in healthy and preclinical middle-aged nonoverweight and overweight Japanese men. Metabolism. 2010;59:1465–71.

    Article  CAS  Google Scholar 

  32. Tsai VW, Macia L, Johnen H, et al. TGF-b Superfamily Cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One. 2013;8:e55174.

    Article  CAS  Google Scholar 

  33. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol. 2014;817:115–33.

    Article  Google Scholar 

  34. Parks BW, Nam E, Org E, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17:141–52.

    Article  CAS  Google Scholar 

  35. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70.

    Article  CAS  Google Scholar 

  36. Liou AP, Paziuk M, Luevano JM Jr, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    Article  Google Scholar 

  37. Ilhan ZE, DiBaise JK, Isern NG, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11:2047–58.

    Article  CAS  Google Scholar 

  38. Bewick GA. Bowels control brain: gut hormones and obesity. Biochem Med (Zagreb). 2012;22:283–97.

    Article  CAS  Google Scholar 

  39. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  Google Scholar 

  40. Pournaras DJ, Osborne A, Hawkins SC, et al. The gut hormone response following Roux-en-Y gastric bypass: cross-sectional and prospective study. Obes Surg. 2010;20:56–60.

    Article  Google Scholar 

  41. Chronaiou A, Tsoli M, Kehagias I, et al. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1 and insulin responses after gastric fundus resection in patients undergoing Roux-en-Y gastric bypass: a randomised clinical trial. Obes Surg. 2013;22:1761–70.

    Article  Google Scholar 

  42. Dimitradis E, Daskalakis M, Kampa M, et al. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann Surg. 2013;257:647–54.

    Article  Google Scholar 

  43. Gelegen C, Chandarana K, Choudhury AI, et al. Regulation of hindbrain Pyy expression by acute food deprivation, prolonged calorie restriction and weight loss surgery in mice. Am Physiol Endocrinol Metab. 2012;303:E659–68.

    Article  CAS  Google Scholar 

  44. Hatoum IJ, Stylopoulos N, Vanhoose AM, et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab. 2012;97:E1023–31.

    Article  CAS  Google Scholar 

  45. Ochner CN, Kwok Y, Conceicao E, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253:502–7.

    Article  Google Scholar 

  46. Saeidi N, Nestoridi E, Kucharczyk J, et al. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes (Lond). 2012;36:1396–402.

    Article  CAS  Google Scholar 

  47. Chen J, Pamuklar Z, Spagnoli A, et al. Serum leptin levels are inversely correlated with omental gene expression of adiponectin and markedly decreased after gastric bypass surgery. Surg Endosc. 2012;26:1476–80.

    Article  Google Scholar 

  48. Korner J, Conroy R, Febres G, et al. Randomized double-blind placebo-controlled study of leptin administration after gastric bypass. Obesity. 2013;21(5):951–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep N. Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tewari, N., Lobo, D.N. (2019). Regulation of Food Intake After Surgery and the Gut-Brain Axis. In: Altomare, D., Rotelli, M. (eds) Nutritional Support after Gastrointestinal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-16554-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16554-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16553-6

  • Online ISBN: 978-3-030-16554-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics