Skip to main content

Biotechnological Approaches to Increase Essential Oil Yield and Quality in Aromatic Plants: The Lavandula latifolia (Spike Lavender) Example. Past and Recommendations for the Future

  • Chapter
  • First Online:
Essential Oil Research

Abstract

Increasing knowledge about isoprenoid biosynthesis pathways has provided new tools for aromatic plant breeding using biotechnological approaches. Notably, there are possibilities to modify essential oil profiles and enhance production of valuable monoterpenes. This attains a particular significance in Lavandula latifolia Medik. (spike lavender), one of the most important essential oil crops in Spain. This chapter summarizes work done to improve essential oil yield and quality by engineering: (1) the enzymes controlling regulatory steps of methyl-D-erythritol 4-phosphate (MEP) and mevalonic acid (MVA) pathways to increase C5 units employed for monoterpene biosynthesis and (2) the monoterpene synthases to produce changes in the qualitative profile of particular monoterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  PubMed  Google Scholar 

  • Aprotosoaie AC, Hăncianu M, Costache II, Miron A (2014) Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragr J 29:193–219

    Article  CAS  Google Scholar 

  • Aprotosoaie AC, Gille E, Trifan A, Luca VS, Miron A (2017) Essential oils of Lavandula genus: a systematic review of their chemistry. Phytochem Rev 16:761–799

    Article  CAS  Google Scholar 

  • Arimura G, Matsui K, Koeduka T, Holopainen JK (2017) Biosynthesis and regulation of plant volatiles and their functional roles in ecosystem interactions and global environmental changes. In: Arimura G, Maffei M (eds) Plant specialized metabolism: genomics, biochemistry, and biological functions. CRC Press, Taylor & Francis Group, Boca Raton, pp 185–238

    Google Scholar 

  • Ashour M, Wink M, Gershenzon J (2010) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. In: Wink M (ed) Biochemistry of plant secondary metabolism. Annu Plant Rev 40. Wiley-Blackwell, Oxford, pp 258–303

    Chapter  Google Scholar 

  • Bach TJ, Lichtenthaler HK (1983) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 9:50–60

    Article  Google Scholar 

  • Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Beier RC, Byrd JA, Kubena LF, Hume ME, McReynolds JL, Anderson RC, Nisbet DJ (2014) Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: effects on poultry. Poult Sci 93:267–272

    Article  CAS  PubMed  Google Scholar 

  • Campos N, Boronat A (1995) Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 7:2163–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5- phosphate reductoisomerase, the first committed enzyme of the 2-C- methyl-D- erythritol-4- phosphate pathway. Plant Physiol 129:1581–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh HMA, Wilkinson IM (2002) Biological activities of lavender essential oil. Phytother Res 16:301–308

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Córdoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943

    Article  PubMed  CAS  Google Scholar 

  • Daviet L, Schalk M (2010) Biotechnology in plant essential oil production: progress and perspective in metabolic engineering of the terpene pathway. Flavour Fragr J 25:123–127

    Article  CAS  Google Scholar 

  • Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, Baudino S, Magnard JL, Jullien F (2017) Bornyl-diphosphate synthase from Lavandula angustifolia: a major monoterpene synthase involved in essential oil quality. Phytochemistry 137:24–33

    Article  CAS  PubMed  Google Scholar 

  • Dudai N, Larkov O, Ravid U, Putiesky E, Lewinsohn E (2001) Developmental control of monoterpene content and composition in Micromeria fruticosa (L.) Druce. Ann Bot 88:349–354

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Dušková E, Dušek K, Indrák P, Smékalová K (2016) Postharvest changes in essential oil content and quality of lavender flowers. Ind Crop Prod 79:225–231

    Article  CAS  Google Scholar 

  • El Alaoui C, Chemin J, Fechtali T, Lory P (2017) Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 12:e0186864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enfissi EMA, Fraser PD, Lois L, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non- mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, McConkey M, Croteau R (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Mateo M, Navarro C, Merino G, Valero A (2016) Evaluation of different Mediterranean essential oils as prophylactic agents in anisakidosis. Pharm Biol 55:456–461

    Article  CAS  Google Scholar 

  • Gonçalves S, Romano A (2013) In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol Adv 31:166–174

    Article  PubMed  CAS  Google Scholar 

  • Guevara-García A, San Román C, Arroyo A, Cortés ME, Gutiérrez-Nava ML, León P (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell 17:628–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haig TJ, Haig TJ, Seal AN, Pratley JE, An M, Wu H (2009) Lavender as a source of novel plant compounds for the development of a natural herbicide. J Chem Ecol 35:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Hallahan DL (2000) Monoterpenoid biosynthesis in glandular trichomes of labiate plants. Adv Bot Res 31:77–120

    Article  CAS  Google Scholar 

  • Harborne JB, Williams CA (2002) Phytochemistry of the genus Lavandula. In: Lis-Balchim M (ed) Lavender. Taylor & Francis Inc, New York, pp 86–99

    Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  CAS  PubMed  Google Scholar 

  • Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, Bohlman J, Dudareva N (2018) Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat Plants 4:721–729

    Article  CAS  PubMed  Google Scholar 

  • Herman A, Tambor K, Herman A (2016) Linalool affects the antimicrobial efficacy of essential oils. Curr Microbiol 72:165–172

    Article  CAS  PubMed  Google Scholar 

  • Herraiz-Peñalver D, Cases MA, Varela F, Navarrete P, Sánchez-Vioque R, Usano-Alemany J (2013) Chemical characterization of Lavandula latifolia Medik. essential oil from Spanish wild populations. Biochem Syst Ecol 46:59–68

    Article  CAS  Google Scholar 

  • Ibrahim MA, Kainulainen P, Aflatuni A, Tiilikkala K, Holopainen JK (2001) Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control insect pests. Agric Food Sci Finl 10:243–259

    Article  CAS  Google Scholar 

  • Irmisch S, Krause ST, Kunert G, Gershenzon J, Degenhardt J, Köllner TB (2012) The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol 12:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  PubMed  CAS  Google Scholar 

  • Jones AMP, Shukla MR, Sherif SM, Brown PB, Saxena PK (2016) Growth regulating properties of isoprene and isoprenoid-based essential oils. Plant Cell Rep 35:91–102

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A (2008) RNA silencing manifested as visibly altered phenotypes in plants. Plant Biotechnol 25:423–435

    Article  CAS  Google Scholar 

  • Kara N, Baydar H (2013) Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turk J Field Crops 18:58–65

    Google Scholar 

  • Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240

    Article  CAS  PubMed  Google Scholar 

  • Lane A, Boecklemann A, Woronuk GN, Sarker L, Soheil S (2010) A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231:835–845

    Article  CAS  PubMed  Google Scholar 

  • Lange BM, Ahkami A (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes-current status and future opportunities. Plant Biotech J 11:169–196

    Article  CAS  Google Scholar 

  • Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci U S A 108:16944–16949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstain A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111

    Article  CAS  Google Scholar 

  • Leivar P, Antolin-Llovera M, Ferrero S, Closa M, Arro M, Ferrer A, Boronat A, Campos N (2011) Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. Plant Cell 23:1494–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage-Meessen L, Bou M, Sigoillot JC, Faulds C, Lomascolo A (2015) Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. Appl Microbiol Biotechnol 99:3375–3385

    Article  CAS  PubMed  Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 27:1256–1265

    Article  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  PubMed  Google Scholar 

  • Lis-Balchin M (2002) Chemical composition of essential oils from different species, hybrids and cultivars of Lavandula. In: Lis-Balchin M (ed) Lavender. Taylor & Francis Inc, New York, pp 251–262

    Google Scholar 

  • Lobstein A, Couic-Marinier F (2017) Huile essentielle de Lavande officinale. Actual Pharm 565:57–60

    Google Scholar 

  • Lu X, Tang K, Ping P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647

    PubMed  PubMed Central  Google Scholar 

  • Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crop Prod 34:785–801

    Article  CAS  Google Scholar 

  • Lücker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA (2001) Expressionof Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant J 27:315–324

    Article  PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci U S A 98:8915–8920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  CAS  PubMed  Google Scholar 

  • Manion CR, Widder RM (2017) Essentials of essential oils. Am J Health Syst Pharm 74:e153–e162

    Article  PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Poudereux I, Muñoz-Bertomeu J, Arrillaga I, Segura J (2014a) Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender. J Plant Physiol 171:1564–1570

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, Arrillaga I, Segura J (2014b) Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metab Eng 23:136–144

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Eisenreich W, Arrillaga I (2015) Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol Biochem 95:113–120

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2006) Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 142:890–900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Arrillaga I, Segura J (2007a) Essential oil variation within and among natural populations of Lavandula latifolia and its relation to their ecological areas. Biochem Syst Ecol 35:479–488

    Article  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2007b) Up- regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotech J 5:746–758

    Article  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Ros R, Arrillaga I, Segura J (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered mono-terpene composition in developing leaves. Metab Eng 10:166–177

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Suzuki M, Yoshida S, Muranaka T (2002) Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216:345–350

    Article  CAS  PubMed  Google Scholar 

  • Nebauer SG, Arrillaga I, del Castillo-Agudo L, Segura J (2000) Agrobacterium tumefaciens-mediated transformation of the aromatic shrub Lavandula latifolia. Mol Breed 6:539–552

    Article  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Re EB, Jones D, Learned RM (1995) Co-expression of native and introduced genes reveals cryptic regulation of HMG-CoA reductase expression in Arabidopsis. Plant J 7:771–784

    Article  CAS  PubMed  Google Scholar 

  • Renaud ENC, Charles DJ, Simon JE (2001) Essential oil quantity and composition from 10 cultivars of organically grown Lavender and Lavandin. J Essent Oil Res 13:269–273

    Article  CAS  Google Scholar 

  • Rivas-Goday S, Rivas-Martínez S (1967) Matorrales y tomillares de la Península Ibérica comprendidos en la clase Ononido-Rosmarinetea Rr. – Bl. 1947. Anal Inst Bot Cavanilles 25:1–183

    Google Scholar 

  • Rivas-Martínez S (1979) Brezales y jarales de Europa occidental (Revisión Fitosociológica de las clases Calluno-ulicetea y Cisto-Lavanduletea). Lazaroa 1:5–127

    Google Scholar 

  • Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15

    Article  CAS  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem 75:375–388

    Article  CAS  Google Scholar 

  • Salido S, Altarejos J, Nogueras M, Sánchez A, Luque P (2004) Chemical composition and seasonal variations of spike lavender oil from Southern Spain. J Essent Oil Res 16:206–210

    Article  CAS  Google Scholar 

  • Segura J, Calvo MC (1991) Lavandula spp. (lavender): in vitro culture, regeneration of plants, and the formation of essential oils and pigments. In: Bajaj YPS (ed) Medicinal and aromatic plants III, biotechnology in agriculture and forestry, vol 15. Springer-Verlag, Berlin-Heidelberg-New York, pp 283–310

    Google Scholar 

  • Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14:135–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smigielski K, Prusinowska R, Krosowiak K, Sikora M (2013) Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). J Essent Oil Res 25:291–299

    Article  CAS  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tissier A, Morgan JA, Dudareva N (2017) Plant volatiles: Going “In” but not “Out” of trichome cavities. Trends Plant Sci 22:930–938

    Article  CAS  PubMed  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutin TO, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1972) Flora europea, vol 3. University Press, Cambridge

    Google Scholar 

  • Upson T (2002) The taxonomy of the genus Lavandula L. In: Lis-Balchin M (ed) Lavender: the genus Lavandula. Taylor & Francis, London, pp 2–34

    Google Scholar 

  • Upson T, Andrews S (2004) The genus Lavandula. Royal Botanic Gardens, Kew

    Google Scholar 

  • Urwin NAR, Mailer RJ (2008) Oil content and fatty acid profiles of seed oil from the genus Lavandula. J Am Oil Chem Soc 85:491–492

    Article  CAS  Google Scholar 

  • Varona S, Kareth S, Martín A, Cocero MJ (2010) Formulation of lavandin essential oil with biopolymers by PGSS for application as biocide in ecological agriculture. J Supercrit Fluids 54:369–377

    Article  CAS  Google Scholar 

  • Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S (2017) The network of plants volatile organic compounds. Sci Rep 7:11050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua NH, Sarojam R (2016) Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnol J 14:1619–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woronuk G, Demissie Rheault M, Mahmoud S (2011) Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Med 77:7–15

    Article  CAS  PubMed  Google Scholar 

  • Zebec Z, Wilkes J, Jervis AJ, Scrutton NS, Takano E, Breitling R (2016) Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr Opin Chem Biol 34:37–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Spanish Government (project AGL2002–00977) and the Valencia Regional Government (projects GV2001–020, Grupos 03/102, PROMETEO/2009/075, and PROMETEOII/2014/052) have funded this work. Predoctoral fellowship (FPU) to JMB and IMP are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Arrillaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Segura, J., Muñoz-Bertomeu, J., Mendoza-Poudereux, I., Arrillaga, I. (2019). Biotechnological Approaches to Increase Essential Oil Yield and Quality in Aromatic Plants: The Lavandula latifolia (Spike Lavender) Example. Past and Recommendations for the Future. In: Malik, S. (eds) Essential Oil Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16546-8_11

Download citation

Publish with us

Policies and ethics