Skip to main content

The Assessment of Thermal Insulation of Bioreactors for an Aerobic Biostabilization of Waste

  • Conference paper
  • First Online:
Infrastructure and Environment

Abstract

The aim of the study was to analyze and assess the thermal insulation of three walls (the side wall, the front wall with a hook and the back wall – the door) of a bioreactor for an aerobic biostabilization of waste (built in accordance with the DIN 30722 standard) for 3 different variants of thermal insulation applied. It should be noted that currently there are no requirements in the literature regarding the design of a thermal insulating layer of bioreactors in municipal solid waste treatment installations in Poland. The side wall of the bioreactor and the front wall (with a hook) appeared to have the best thermal insulation while the back wall (the door of the bioreactor) showed the worst insulation. This was confirmed by photographs (thermograms) taken using a thermal imaging camera. The highest observed temperatures were recorded on the door of the bioreactor, on which many thermal bridges were also visible. The lowest mean temperatures on the surface of the bioreactor walls were obtained using foam insulation (variant 1), however, it was found that the differences between the temperatures of the analyzed elements in particular variants were not statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adani, F., Tambone, F., Gotti, A.: Biostabilization of municipal solid waste. Waste Manag 24(8), 775–783 (2004). https://doi.org/10.1016/j.wasman.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  2. Andonova, A., Aleksandrov, A., Peichev, K., Georgiev, R.: Thermography evaluation of a bioreactor’s heat loss to surrounding environment. In: Electronics and Nanotechnology, 12–14 April, Kyiv, Ukraine (2011)

    Google Scholar 

  3. Andonova, A., Takov, T.: Identification of damage in materials using infrared thermogra-phy. Adv. Mater. Oper. J. 1(1), 114–117 (2011)

    Google Scholar 

  4. Baran, D., Famielec, S., Koncewicz-Baran, M., Malinowski, M., Sobol, Z.: The changes in exhaust gas and selected waste properties during biostabilization process. Proc. ECOpole 10(1), 11–18 (2016). https://doi.org/10.2429/proc.2016.10(1)001

    Article  CAS  Google Scholar 

  5. Dębicka, M., Żygadło, M., Latosińska, J.: Investigations of bio-drying process of municipal solid waste. Ecol. Chem. Eng. A 20(12), 1461–1470 (2013)

    Google Scholar 

  6. Dębicka, M., Żygadło, M., Latosińska, J.: The effectiveness of biodrying waste treatment in full scale reactor. Open Chem. 15, 67–74 (2017). https://doi.org/10.1515/chem-2017-0009

    Article  CAS  Google Scholar 

  7. Dziedzic, K., Łapczyńska-Kordon, B., Malinowski, M., Niemiec, M., Sikora, J.: Impact of aerobic biostabilisation and biodrying process of municipal solid waste on minimisation of waste deposited in landfills. Chem. Process Eng. 36(4), 381–394 (2015). https://doi.org/10.1515/cpe-2015-0027

    Article  CAS  Google Scholar 

  8. Gliniak, M., Grabowski, Ł., Wołosiewicz-Głąb, M., Polek, D.: Influence of ozone aeration on toxic metal content and oxygen activity in green waste compost. J. Ecol. Eng. (Inżynieria Ekologiczna) 18(4), 90–94 (2017)

    Article  Google Scholar 

  9. Jędrczak, A.: Biologiczne przetwarzanie odpadów. Wydawnictwo Naukowe PWN, Warszawa (2007). ISBN 978-83-01-15166-9

    Google Scholar 

  10. Malinowski, M.: Analysis of the undersize fraction temperature changes during the biostabilization process. Infrastruct. Ecol. Rural Areas IV(3), 1773–1784 (2017). https://doi.org/10.14597/infraeco.2017.4.3.133

    Article  Google Scholar 

  11. Malinowski, M., Sikora, J.: Termograficzna analiza wybranych przegród budowlanych w aspekcie ich termoizolacyjności. Infrastruktura i Ekologia Terenów Wiejskich, no. 3/IV, pp. 91–104 (2013)

    Google Scholar 

  12. Nuzzo, I., Calia, A., Liberatore, D., Masini, N., Rizzo, E.: Integration of ground-penetrating radar, ultrasonic testes and infrared thermography for the analysis of precious medieval rose window. Adv. Geosci. 24, 69–82 (2010)

    Article  Google Scholar 

  13. Ostrowski, C., Antczak, E., Defer, D., Duthoit, BŁ.: Association of infra-red thermography and thermal impedance applied to the detection of empty spaces under concrete slabs. In: Proceedings of the International Symposium on “Non-Destructive Testing in Civil Engineering”, pp. 1–6 (2003)

    Google Scholar 

  14. Pleşu, R., Teodoriu, G., Ţăranu, G.: Infrared thermography applications for building investigation. Buletinul Institutului Politehnic Din Iaşi. Tomul LVIII(LXII), 1 (2012)

    Google Scholar 

  15. Rutkowska, G., Klepak, O., Podawca, K.: Problemy strat ciepła w istniejących budynkach jednorodzinnych w kontekście błędów wykonawczych. Ann. Set Environ. Prot. 15, 262–2639 (2013)

    Google Scholar 

  16. Stimolo, M.: Passive infrared thermography as inspection and observation tool in bridge and road construction. In: Proceedings in the International Symposium (NDT-CE 2003) (2003)

    Google Scholar 

  17. Szul, T.: Ocena efektywności energetycznej budynków. Wydawnictwo Naukowe INTELLECT, Waleńczów (2018)

    Google Scholar 

  18. Teleszewski, T.J., Żukowski, M.: Analysis of heat loss of a biogas anaerobic digester in weather conditions in Poland. J. Ecol. Eng. 19(4), 250–252 (2018)

    Article  Google Scholar 

  19. Titta, G., Viviani, G., Sabella, D.: Biostabilization and biodrying of municipal solid waste. In: Eleventh International Waste Management and Landfill Symposium, Cagliari, Sardinia, Italy, pp. 1085–1086 (2007)

    Google Scholar 

  20. Wróbel A.: Termografia w pomiarach inwentaryzacyjnych obiektów budowlanych. Rozprawy Monografie 209, Wyd. AGH. (2010)

    Google Scholar 

Download references

Acknowledgements

This research was financed by the Ministry of Science and Higher Education of the Republic of Poland (means of Statutory Research No. DS 3600/WIPIE, University of Agriculture in Krakow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Malinowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malinowski, M., Religa, A., Szul, T., Wołtosz, P., Łukasiewicz, M. (2019). The Assessment of Thermal Insulation of Bioreactors for an Aerobic Biostabilization of Waste. In: Krakowiak-Bal, A., Vaverkova, M. (eds) Infrastructure and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-16542-0_4

Download citation

Publish with us

Policies and ethics