Skip to main content

Ecotoxic Effect of Photocatalytic Active Nanoparticles on Human Health and the Environment

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 737 Accesses

Abstract

Nanotechnology is a major newfound scientific growth area that can exhibit a variety of risks for environments. The small size of nanoparticles and their morphology, as well as their surface properties, provide surfaces that can bind and carry toxic chemical contaminants. For hazard evaluation of nanoparticles, quantitative ecotoxicological data are required. This chapter presents a complete literature review on the toxicity (L(E) C50 values) of nanoparticles (NPs) to ecological receptors such as algae and aquatic plants (1) to recognize the most harmful nanoparticles and sensitive organism classes; (2) to identify the biological characteristics of the (photocatalytic) nanoparticles that have the most biological importance; and (3) to provide accordant ecotoxicological information for further hazardous assessment. The focus was assessed on some synthetic nanoparticles and organism groups representing main food hain levels (algae and aquatic plants). Furthermore, this chapter provides an extensive literature overview on Ag, CuO and ZnO, and TiO2 NPs toxicity mechanisms on the basis of different environmentally accordant test species in vitro and factors to modify the ecotoxic effect of NPs. Photo-induced toxicity can be another considerable mechanism of toxicity under environmentally accordant UV irradiation. However, the usual rarity of experimental data, their disparate distribution among the photocatalytic nanoparticles and environmental states, the difficulties in modifying nanoparticles and obtaining homogeneous and stable suspensions, and the confusion from indistinct metrics, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quantum dots.

  2. 2.

    Lactate dehydrogenase.

  3. 3.

    Dimethyl sulfoxide.

  4. 4.

    Disodium 4,5-dihydroxy-1,3-benzenedisulfonate.

References

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852

    Article  CAS  Google Scholar 

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21):3326–3337

    Article  CAS  PubMed  Google Scholar 

  • Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Å tangar UL, Bergant M, Mahne D (2007) Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18(37):375709

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23(5):591–598

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko O, Ivask A, Käkinen A, Kahru A (2012) Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–89

    Article  CAS  PubMed  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Boxall AB, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, p 89

    Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  PubMed  Google Scholar 

  • Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52(8):2346–2348

    CAS  PubMed  Google Scholar 

  • Cattaneo AG, Gornati R, Chiriva-Internati M, Bernardini G (2009) Ecotoxicology of nanomaterials: the role of invertebrate testing. Invertebr Surviv J 6(1):78–97

    Google Scholar 

  • Cheloni G, Slaveykova VI (2013) Optimization of the C11-BODIPY581/591 dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry. Cytometry A 83(10):952–961

    PubMed  Google Scholar 

  • Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17(5):421

    Article  CAS  PubMed  Google Scholar 

  • Dalai S, Pakrashi S, Kumar RS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1(2):116–130

    Article  CAS  Google Scholar 

  • Dasari TP, Pathakoti K, Hwang HM (2013) Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci 25(5):882–888

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211:3–29

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6, to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159(7):1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693

    Article  CAS  Google Scholar 

  • EPA U (2009) External review draft-nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Triangle Park

    Google Scholar 

  • Farbod M, Jafarpoor E (2012) Fabrication of different ZnO nanostructures and investigation of morphology dependence of their photocatalytic properties. Mater Lett 85:47–49

    Article  CAS  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95

    Article  PubMed  CAS  Google Scholar 

  • Fenoglio I, Greco G, Livraghi S, Fubini B (2009) Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chem Eur J 15(18):4614–4621

    Article  CAS  PubMed  Google Scholar 

  • Fernandes T, Nielsen H, Burridge T, Stone V (2007) Toxicity of nanoparticles to embryos of the marine macroalgae Fucus serratus. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials, London, England, 2007

    Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Friehs E, Al Salka Y, Jonczyk R, Lavrentieva A, Jochums A, Walter JG, Stahl F, Scheper T, Bahnemann D (2016) Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. J Photochem Photobiol C Photochem Rev 29:1–28

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639

    Article  CAS  Google Scholar 

  • Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178(1-3):115–122

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Article  CAS  PubMed  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269(2-3):190–197

    Article  CAS  PubMed  Google Scholar 

  • Hatamie A, Khan A, Golabi M, Turner AP, Beni V, Mak WC, Sadollahkhani A, Alnoor H, Zargar B, Bano S, Nur O (2015) Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39):10913–10921

    Article  CAS  PubMed  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ramírez A, Medina-Ramírez I (2015) Semiconducting materials. In: Photocatalytic semiconductors. Springer, Cham, pp 1–40

    Google Scholar 

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42(4):586–591

    Article  CAS  Google Scholar 

  • Huang CP, Cha DK, Ismat SS (2005) Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton. EPA Grant number: R831721

    Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13(4):225–232

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    Article  CAS  PubMed  Google Scholar 

  • Idris NM, Lucky SS, Li Z, Huang K, Zhang Y (2014) Photoactivation of core–shell titania coated upconversion nanoparticles and their effect on cell death. J Mater Chem B 2(40):7017–7026

    Article  CAS  PubMed  Google Scholar 

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2):701–716

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Jiang KJ, Kitamura T, Yin H, Ito S, Yanagida S (2002) Dye-sensitized solar cells using brookite nanoparticle TiO2 films as electrodes. Chem Lett 31(9):872–873

    Article  Google Scholar 

  • Kägi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2):233–239

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2-3):105–119

    Article  CAS  PubMed  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Knox JP (1995) The extracellular matrix in higher plants. 4. Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB J 9(11):1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881

    Article  CAS  PubMed  Google Scholar 

  • Kus M, Gernjak W, RodrÃguez SM, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energ Eng 128(3):331–337

    Article  CAS  Google Scholar 

  • Lakshmi Prasanna V, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33):9155–9162

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91(4):536–544

    Article  CAS  PubMed  Google Scholar 

  • Li S, Pan X, Wallis LK, Fan Z, Chen Z, Diamond SA (2014) Comparison of TiO2 nanoparticle and graphene–TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Chemosphere 112:62–69

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles: the role of ROS mediated cell injury. Nanotechnology 22(10):105101

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • Maynard A, Michelson E (2006) The nanotechnology consumer products inventory. Woodrow Wilson International Center for Scholars, Washington, DC, accessed 23 Mar

    Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  PubMed  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159(3):677–684

    Article  CAS  PubMed  Google Scholar 

  • Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials, Sept 24, 2007, vol 25

    Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7(1):e30321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  PubMed  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269(2-3):182–189

    Article  CAS  PubMed  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Kägi R, Odzak N, Sigg L, Behra R (2007) Toxicity mechanisms of silver nanoparticles to Chlamydomonas reinhardtii. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials (oral presentation), London, UK, 2007

    Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohtani B (2013) New and future developments in catalysis: chapter 5. Principle of photocatalysis and design of active photocatalysts. Elsevier Inc. Chapters.

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappa A, Franco R, Schoneveld O, Galanis A, Sandaltzopoulos R, Panayiotidis MI (2007) Sulfur-containing compounds in protecting against oxidant-mediated lung diseases. Curr Med Chem 14(24):2590–2596

    Article  CAS  PubMed  Google Scholar 

  • Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24(13):6659–6667

    Article  CAS  PubMed  Google Scholar 

  • Pichat P (2007) A brief overview of photocatalytic mechanisms and pathways in water. Water Sci Technol 55(12):167–173

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. https://doi.org/10.1155/2013/431218

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    PubMed  Google Scholar 

  • Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M (2013) Protein–nanoparticle interactions. Springer, Berlin

    Book  Google Scholar 

  • Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res-Fund Mol M 640(1):113–122

    Article  CAS  Google Scholar 

  • Rodriguez-Moya M, Li D, Alvarez PJ (2007) Inactivation of virus in water by nanoparticles under UV irradiation. Annual meeting, Salt Lake City, UT, 2007

    Google Scholar 

  • Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T (2009) A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett 9(9):3337–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86(5):521–522

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  PubMed  Google Scholar 

  • Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360(3):794–802

    Article  CAS  Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116:90–101

    Article  PubMed  CAS  Google Scholar 

  • Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71(4):307–317

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Terashima M, Nagao S (2007) Solubilization of [60]fullerene in water by aquatic humic substances. Chem Lett 36(2):302–303

    Article  CAS  Google Scholar 

  • Tong T, Binh CT, Kelly JJ, Gaillard JF, Gray KA (2013) Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 47(7):2352–2362

    Article  CAS  PubMed  Google Scholar 

  • Valko MM, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17(5):410–420

    Article  CAS  PubMed  Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeter Biodegr 60(2):96–102

    Article  CAS  Google Scholar 

  • von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8(6):605–630

    Article  CAS  Google Scholar 

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110

    Article  CAS  PubMed  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. ACS Publ 40(14):4336–4345

    Article  CAS  Google Scholar 

  • Xi L, Lek JY, Liang YN, Boothroyd C, Zhou W, Yan Q, Hu X, Chiang FB, Lam YM (2011) Stability studies of CdSe nanocrystals in an aqueous environment. Nanotechnology 22(27):275706

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, Xu H (2010) Nano titanium dioxide induces the generation of ROS and potential damage in HaCa T cells under UVA irradiation. J Nanosci Nanotechnol 10(12):8500–8507

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Yu LP, Fang T, Xiong DW, Zhu WT, Sima XF (2011) Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, OH production and particle dissolution in distilled water. J Environ Monit 13(7):1975–1982

    Article  CAS  PubMed  Google Scholar 

  • Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Biol Ecol 245(1):57–68

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9(3):479–489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Peyravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peyravi, M., Khalili, S., Jahanshahi, M., Zakeritabar, S.F. (2019). Ecotoxic Effect of Photocatalytic Active Nanoparticles on Human Health and the Environment. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16534-5_8

Download citation

Publish with us

Policies and ethics