Skip to main content

Application of Nanotechnology in Plant Protection by Phytopathogens: Present and Future Prospects

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 827 Accesses

Abstract

Plant diseases are one of the major factors that can limit crop productivity and have a serious impact on the economic output of a farm. They cause 14% yield losses to agriculture in the world. Nanotechnology is emerging in agriculture, and it provides efficient and sustainable food production by improving rapid diagnosis and detection of different diseases and pest incidence in plants using nanoformulations, enhancing the ability of plants to control diseases and environmentally safe application of chemicals and increasing the efficacy of pesticides by using only minor doses through nano-based materials. Recently, several studies have reported that nanoformulations can be used for improving the yield and quality of several crops by reducing the amount of chemicals released in the environment. This chapter provides a compilation of technologies involved in synthesis of nanoparticles and then an overview of the application of nanotechnology in agriculture with special focus on plant protection products and nanopesticides. In fact, the nanotechnologies potency was discussed in an integrated pest management issue as cost-effective and eco-friendly methodologies. The advantages and limitations of nanotechnologies were also discussed in order to provide a support in making decision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Hai KM, El-Metwally MA, El-Baz SM, Zeid AM (2009) The use of antioxidants and microelements for controlling damping-off caused by Rhizoctonia solani and charcoal rot caused by Macrophomina phasoliana on sunflower. Plant Pathol J 8:79–89

    Article  CAS  Google Scholar 

  • Abdellatif KF, Hamouda RA, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplant plants and their effect on plant DNA modification. Iran J Biotechnol 14:250–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Abd-Elsalam KA (2013) Fungal genomics and biology nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:e107

    Google Scholar 

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing (ISBN 978-3-319-91161-8). https://www.springer.com/us/book/9783319911601

  • Acharya S, Hill JP, Ariga K (2008) Soft Langmuir–Blodgett technique for hard nanomaterials. Adv Mater 21(29):2959–2981

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burligton/London, UK

    Google Scholar 

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269

    Article  CAS  PubMed  Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Chen Man YB, Islam KH (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:103607

    Google Scholar 

  • Ali A, Zafar H, Zia M, Ul hap I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando Y, Miyake K, Mizuno A, Korenaga A, Nakano M, Mano H (2010) Fabrication of nano stripe surface structure by multilayer film deposition combined with micropatterning. Nanotechnology 21(9):095304

    Article  CAS  PubMed  Google Scholar 

  • André Lévesque C (2001) Molecular methods for detection of plant pathogens-what is the future. Can J Plant Pathol 24:333–336

    Article  Google Scholar 

  • Anjali CH, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Anwar Haq M, Collin MA, Brian Tomsett A, Jones MG (2003) Detection of Sclerotium cepivorum within onion plants using PCR primers. Physiol Mol Plant Pathol 62:185–189

    Article  CAS  Google Scholar 

  • Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340

    Article  CAS  PubMed  Google Scholar 

  • Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:104–109

    Article  CAS  Google Scholar 

  • Ariga K, Lee MV, Mori T, Yu X-Y, Hill JP (2010) Two-dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interf Sci 154:20–29

    Article  CAS  Google Scholar 

  • Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol 11(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Arvind Bharani RS, Karthick Raja Namasivayam S, Shankar S (2014) Biocompatible chitosan nanoparticles incorporated pesticidal protein beauvericin (Csnp-Bv) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera Litura (Fab.) (Lepidoptera; Noctuidae). Int J Chem Tech Res 6:5007–5012

    Google Scholar 

  • Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC (2005) Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 329(4):1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Baghat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1984. https://doi.org/10.1038/srep0129

    Article  Google Scholar 

  • Bansal P, Bubel K, Agarwal S, Greiner A (2012) Water-stable all-biodegradable microparticles in nanofibers by electrospinning of aqueous dispersions for biotechnical plant protection. Biomacromolecules 13(2):439–444. https://doi.org/10.1021/bm2014679

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems 33–93. https://doi.org/10.1007/978-3-319-41129-3_2

    Chapter  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Biswas A, Eilers H, Hidden F, Aktas OC, Kiran CVS (2006) Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Appl Phys Lett 88:103–113

    Article  CAS  Google Scholar 

  • Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 108:181–187

    Article  CAS  PubMed  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Munford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Borei HA, Zl Samahy MFM, Galal OA, Thabet AF (2014) The efficiency of silica nanoparticles in control cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) in soybean under laboratory conditions. Glob J Agric Food Safety Sci 2:161–168

    Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalu- mina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Inter J Pest Manage 6:80–89

    Google Scholar 

  • Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protect Res 57(2):194–200

    Article  CAS  Google Scholar 

  • Bystricka D, Lenz O, Mraz I, Dedic P, Sip M (2003) DNA microarray: parallel detection of potato viruses. Acta Virol 47:41–44

    CAS  PubMed  Google Scholar 

  • Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. Appl Mater Interfaces 7(18):9546–9553

    Article  CAS  Google Scholar 

  • Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012) DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11:9295–9301

    Article  CAS  Google Scholar 

  • Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Hsing YIC, Mou CY (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287

    Article  CAS  PubMed  Google Scholar 

  • Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5):4719–4730

    Article  CAS  PubMed  Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung NV (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th ECS meeting. Las Vegas, October 10–15, pp 2278

    Google Scholar 

  • Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manage Hortic Ecosyst 19(2):131–151

    Google Scholar 

  • Christenson LD, Foote RH (1960) Biology of fruit flies. Annu Rev Entomol 5:171–192

    Article  Google Scholar 

  • Christofoli M, Candida Costa EC, Bicalho KU, Cassia Domingues VD, Peixoto MF, Fernandes Alves CC, Araujo WL, Melo Cazal CD (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crop Prod 70:301–308

    Article  CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Young KJ (2014) Nematicidal effects of silver nanoparticles on Root-knot nematode in Burmudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnobai De Jorge B, Bisotto-de-Oliviera R, Pereira CN, Sant’Ana J (2017) Novel nanoscale pheromone dispenser for more accurate evaluation of Grapholita molesta (Lepidoptera: Tortricidae) attract-and-kill strategies in the laboratory. Pest Manag Sci 73(9):1921–1926

    Article  CAS  PubMed  Google Scholar 

  • Dean R, van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Debnath N, Das S, Seth D (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256

    Article  CAS  Google Scholar 

  • Deyoung Z, Willingmann P, Heinze C, Adam G, Pfunder M, Frey B, Frey JE (2005) Differentiation of cucumber mosaic virus isolates by hybridization to oligonucleotides in a microarray format. J Virol Methods 123:101–108

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • El Bendary HM, El Helaly AA (2013) First record nanotechnology in agricultural: silica nano- particles a potential new insecticide for pest control. App Sci Rep 4(3):241–246

    Google Scholar 

  • Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Coll Surfac A: Physicochem Eng Asp 372:66–72

    Article  CAS  Google Scholar 

  • El-Helaly AA, El-Bendary HM, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S (2016) The silica-nano particles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J Entomol Zool Stu 4(1):175–180

    Google Scholar 

  • Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070–8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci 100(11):6297–6301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forim MR, Costa ES, Fernandes da Silva MFG, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano−/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  PubMed  Google Scholar 

  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  PubMed  Google Scholar 

  • Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43(1):30–45

    Article  CAS  Google Scholar 

  • Gopal M, Kumar R, Goswami M (2012) Nano pesticides -a recent approach for pest control. J Plant Prot Sci 4(2):1–7

    Google Scholar 

  • Goswami BK (1993) Effect of different soil amendments with neem cake on root knot nematode and soil mycoflora in cowpea rhizosphere. Indian J Plant Prot 21(1):87–89

    Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pest Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing Switzerland AG 247–266

    Google Scholar 

  • Guzman MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their anti bacterial activity. Int J Chem Biomol Eng 2(3):104–111

    CAS  Google Scholar 

  • Hua KH, Wang HC, Chung RS, Hsu JC (2015) Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J Pestic Sci 40:208–213

    Article  CAS  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomed 2:681–693

    Article  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd. Singapore 305–317

    Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kmaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Article  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A: Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius J, Wesemael WML et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235. https://doi.org/10.1016/j.envint.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture. Sustainable agriculture reviews 21, vol 2. Springer, Cham

    Google Scholar 

  • Khan MN, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  • Khater M, Escosura-Muñiz A, MerkoçI A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  PubMed  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraemer S, Fuierer RR, Gorman CB (2009) Scanning probe lithography using self-assembled monolayers. Chem Rev 103:4367–4418

    Article  CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Kucharska K, Tumialis D, Pezowicz E, Skrzecz I (2011) The effect of gold nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes from Owinema biopreparation. Insect pathogens and entomopathogenic nematodes IOBC/wprs Bulletin vol. 66, str. 347–349

    Google Scholar 

  • Lacava PT, Araujo WL, Azevedo JL, Hartung JS (2006) Rapid, Speicific and quantitative assays for detection of the endophytic bacterium methylobacterium mesophilicum in plants. J Microbial Methods 65:535–541

    Article  CAS  Google Scholar 

  • Lee KB, Lim JH, Mirkin CA (2003) Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 125:5588–5589

    Article  CAS  PubMed  Google Scholar 

  • Li W, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J Microbiol Methods 66:104–115

    Article  CAS  PubMed  Google Scholar 

  • Li L, Rafael RG, Gershgoren E, Hwang H, Fourkas JT (2009) Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Roh J-Y, Eom H-J, Hyun JW, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592

    Article  CAS  PubMed  Google Scholar 

  • López MM, Bertolini E, Olmos A, Caruso P, Gorris MT, Llop P, Penyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243

    Article  PubMed  CAS  Google Scholar 

  • Louder JK (2015) Nanotechnology in agriculture: interactions between nanomaterials and cotton agrochemicals. Ph.D. Thesis, Texas Tech University, Texas, USA

    Google Scholar 

  • Louws FJ, Rademaker JLW, de Bruijn FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection and disease diagnosis. Annu Rev Phytopathol 37:81–125

    Article  CAS  PubMed  Google Scholar 

  • Mailly D (2009) Nanofabrication techniques. Eur Phys J Special Topics 172:333–342

    Article  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow MAX, Verdier V, Beer SV, Machado MA, Toth IAN (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrian CRK, Tennant DM (2009) Nanofabrication. J Vac Sci Technol A 21:S207–S215

    Article  CAS  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • McSorley R, Duncan LW (1995) Economic thresholds and nematode management. Adv Plant Pathol 11:147–171

    Article  Google Scholar 

  • Miller SA, Beed FD, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Annu Rev Phytopathol 47:15–38

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh HB (2016) Preparation of biomediated metal nanoparticles. Indian Patent Filed 201611003248

    Google Scholar 

  • Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016) Eco-friendly drugs from the marine environment: sponge weed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res Int 23(16):16671–16685

    Article  CAS  PubMed  Google Scholar 

  • Nassar AMK (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognit. Asian J Nematol 5:12–19

    Article  Google Scholar 

  • Nicol JM, Rivoal R (2008) Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes, vol 2. Springer, Dordrecht, The Netherlands, pp 243–287

    Google Scholar 

  • Nitai D (2012) Entomotoxic surface functionalized nanosilica: design, efficacy, molecular mechanism of action and value addition studies. PhD. School of Biotechnology & Biological Science. West Bengal University of Technology, India

    Google Scholar 

  • Nolasco G, Sequeira Z, Soares C, Mansinho A, Bailey AM, Niblett CL (2002) Asymmetric PCR ELISA: increased sensitivity and reduced costs for the detection of plant viruses. Eur J Plant Pathol 108(4):293–298

    Article  CAS  Google Scholar 

  • Oliveira JL, Campos EV, Goncalves CM, Pasquoto T, de Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432

    Article  PubMed  CAS  Google Scholar 

  • Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6:67–70

    Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza Y, Bilan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotech 4:669–673

    Article  CAS  Google Scholar 

  • Perrault SD, Chan WCW (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Nat Acad Sci 107:11194–11199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Bagde US, Varma A (2012) An overview of intellectual property rights in relation to agricultural biotechnology. Afr J Biotechnol 11(73):13746–13752

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology an agricultural paradigm. Springer, Singapore, p 371

    Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017c) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., pp 253–269

    Google Scholar 

  • Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, I.A.R.I., New Delhi, India, pp 111–118

    Google Scholar 

  • Predicala B (2009) Nanotechnology: potential for agriculture. In: Proceedings of the 78th annual southern states communication association national convention, April 2–6, 2008, Savannah, GA, USA, pp 123–134

    Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol 94:525–534

    Google Scholar 

  • Rogers JA, Lee HH (2008) Unconventional nanopatterning techniques and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu D-Y, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  PubMed  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72:590–594

    Article  Google Scholar 

  • Ruiz-Ruiz S, Moreno P, Guerri J, Ambros S (2009) Discrimination between mild and severe Citrus tristeza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Phytopathology 99(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Sabbour MM, Abd El-Aziz SE (2015) Efficacy of nano-diatomaceous earth against red flour beetle, Tribolium castaneum and confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae) under laboratory and storage conditions. Bull Env Pharmacol Life Sci 4(7):54–59

    CAS  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515

    Article  Google Scholar 

  • Sahab AF, Waly AL, Sabbour MM, Nawar LS (2015) Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J Chem Tech Res 8(2):589–598

    CAS  Google Scholar 

  • Sakakibara K, Hill JP, Ariga K (2011) Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7(10):1288–1308

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017a) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore 1–17

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, pp 73–97

    Google Scholar 

  • Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39

    Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Inc, Hyattsville, pp 7–14

    Google Scholar 

  • Savary S, Willocquet L (2014) Simulation modeling in botanical epidemiology and crop loss analysis. Plant Health Instructor (Online), 147, https://doi.org/10.1094/PHI-A-2014-0314-01

  • Schäffer E, Thurn-Albrecht T, Russell TP, Sakakibara K, Hill JP, Ariga K (2000) Electrically induced structure formation and pattern transfer. Let Nat 403:874–877

    Article  Google Scholar 

  • Schmid GM, Miller M, Brooks C, Khusnatdinov N, La Brake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang XM (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B 27:573

    Article  CAS  Google Scholar 

  • Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saundners K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenkbier L, Pollok S, Konig S, Urban M et al (2015) Towards on-site testing of phytophtora species. Anal Methods 7:211–217

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96

    Article  CAS  Google Scholar 

  • Sharma H, Dhirta B, Shirkot P (2017) Evaluation of biogenic iron nano formulations to control Meloidogyne incognita in okra. Int J Chem Stud 5(5):278–284

    Google Scholar 

  • Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Seyed Sharifi R (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2(2):112–113

    Article  Google Scholar 

  • Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JC, Lee KB, Wang Q, Finn MG, Johnson JE, Mrksich M, Mirkin CA (2003) Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett 3(7):883–886

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  PubMed  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579

    CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Stuchinskava T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831

    Article  CAS  Google Scholar 

  • Taha EH (2016) Nematicidal effects of silver nanoparticles on Root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse. J Plant Prot Path, Mansoura Univ 7(5):333–337

    Google Scholar 

  • Taha EH, Abo-Shady NM (2016) Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. Int J Zool Res 12:47–50

    Article  CAS  Google Scholar 

  • Tang YB, Xing D, Zhu DB, Liu JF (2007) An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses. Anal Chim Acta 582(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Teixeira DC, Danet JL, Evellard S, Martins EC, de Jesus WC, Yamamoto PT, Lopez SA, Bassanezi RB, Ayres AJ, Saillard C, Nad A, Bové JM (2005) Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Mol Cell Probes 19(3):173–179

    Article  CAS  Google Scholar 

  • Thompson DT (2007) Using gold nanoparticles for catalysis. Nano Today 2(4):40–43

    Article  Google Scholar 

  • Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sens Actuators B- Chem 181:644–651

    Article  CAS  Google Scholar 

  • Velayuthan K, Rahman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111(6):2329–2337

    Article  Google Scholar 

  • Waeyenberge L, Viaene N, Moens M (2009) Species-specific duplex PCR for the detection of Pratylenchus penetrans. Nematology 11:847–857

    Article  CAS  Google Scholar 

  • Wang L, Li PC (2007) Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agri Food Chem 55(26):10509–10516

    Article  CAS  Google Scholar 

  • Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence adequate material characterization? Toxicol Sci 101:183–185

    Article  CAS  PubMed  Google Scholar 

  • Wee EJH, Ngo TH, Trau M (2015) Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs. Clin Epigenetics. https://doi.org/10.1186/s13148-015-0100-6

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk HLGHM (2008) Nanomaterials in soils. Geoderma 146:291–302

    Article  CAS  Google Scholar 

  • Yaman M, Khudiyev T, Ozgur E, Kanik M, Aktas O, Ozgur EO, Deniz H, Korkut E, Bayindir M (2011) Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 10:494–591

    Article  CAS  PubMed  Google Scholar 

  • Yan FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agri Food Chem 57(21):10156–10163. https://doi.org/10.1021/jf9023118

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CH (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II Parts 1 and 2:79–82:513–516

    Google Scholar 

  • Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102

    Google Scholar 

  • Zaiee M, Moharramipour S, Mohsenifar A (2014) MA-Chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J Pest Sci 87:691–699

    Article  Google Scholar 

  • Zhang L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  Google Scholar 

  • Zhao RY (2014) design synthesis and property of azo-polymer with photo-responsive function. Ph.D. Thesis, Jilin University, Jilin, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mokrini, F., Bouharroud, R. (2019). Application of Nanotechnology in Plant Protection by Phytopathogens: Present and Future Prospects. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16534-5_13

Download citation

Publish with us

Policies and ethics