Skip to main content

Introduction to Nanoscience, Nanomaterials, Nanocomposite, Nanopolymer, and Engineering Smart Materials

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Biophysical properties of nanoscale objects like high surface area, high diffusivity to cells, efficient uptake, high capacity to be used in biological interfaces, etc. make them very useful tools. Bionanotechnology or nanobiotechnology overlaps nanotechnology in terms of generation of bio-inspired hybrid materials derived from chemical or biological synthesis to fabricate functional macromolecules. Microbial cells are ideal producers for such structures because of their controlled culturability, easily genetic manipulability, and wide diversity.

Biotechnology and molecular biology applications of nanotechnology are widely accepted techniques. DNA extraction and isolation from ancient bone samples, degraded body parts, etc. is still quite difficult. In molecular biology, nanoparticle applications have become an increasingly popular technique for the separation of biomolecules namely proteins, DNA and RNA, for genomics, proteomics, or metabolomics.

In this text, some latest applications of the nanomaterials such as nanotubes, nanoparticles, nanosensors, and so on which use microbial technology and the application of nanotechnology in biotechnology and molecular biology are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ansari N, Pandya A, Sutariya P, Lodha A (2018) Forensic nanotechnology in forensic genetics. Peer Rev J Foren Gen Sci 1(1):1–4

    Google Scholar 

  • Ash C, Foley J, Pennisi E (2008) Lost in microbial space. Am Assoc Adv Sci 320:1027

    CAS  Google Scholar 

  • Bhat JS (2005) Concerns of new technology based industries-the case of nanotechnology. Technovation 25(5):457–462

    Article  Google Scholar 

  • Bonoiu AC, Mahajan SD, Ding H, Roy I, Yong KT, Kumar R, Hu R, Bergey EJ, Schwartz SA, Prasad PN (2009) Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci U S A 106(14):5546–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheimvandillen PME, Vandernoordaa J (1990) Rapid and Simple method for purification of nucleic-acids. J Clin Microbiol 28(3):495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Burns A, Ow H, Wiesner U (2006) Fluorescent core–shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042

    Article  CAS  PubMed  Google Scholar 

  • Colpitis C, Kiani A (2016) Synthesis of bioactive three-dimensional silicon-oxide nanofibrous structures on the silicon substrate for bionic devices’ fabrication. Nanomater Nanotechnol 6(8):1–7

    Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459

    Article  CAS  PubMed  Google Scholar 

  • Fiorino D (2010) Voluntary initiatives, regulation, and nanotechnology oversight: charting a path, project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, D.C.

    Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Gong R, Li SY (2014) Extraction of human genomic DNA from whole blood using a magnetic microsphere method. Int J Nanomedicine 9:3781–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47(6):1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Guo PX (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5(12):833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo PX, Haque F, Hallahan B, Reif R, Li H (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22(4):226–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan RY, Hassan HN, Abdel-Aziz MS, Khaled E (2014) Nanomaterials-based microbial sensor for direct electrochemical detection of Streptomyces spp. Sensors Actuators B Chem 203:848–853

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Juranek S, Lipps HJ (2006) Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 14(5):613–626

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2008) Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 17(2):89–101

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, DeLong R, Fisher MH, Juliano RL (2005) Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 22(12):2099–2106

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653

    Article  CAS  PubMed  Google Scholar 

  • Keles E, Song Y, Du D, Dong WJ, Lin YH (2016) Recent progress in nanomaterials for gene delivery applications. Biomater Sci-UK 4(9):1291–1309

    Article  CAS  Google Scholar 

  • Kirschling TL, Golas PL, Unrine JM, Matyjaszewski K, Gregory KB, Lowry GV, Tilton RD (2011) Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ Sci Technol 45(12):5253–5259

    Article  CAS  PubMed  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3(11):1223–1230

    Article  PubMed  Google Scholar 

  • Lian W, Huang J, Yu J, Zhang X, Lin Q, He X, Xing X, Liu S (2012) A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control 26(2):620–627

    Article  CAS  Google Scholar 

  • Lodha A, Pandya A, Shukla RK (2016) Nanotechnology: an applied and robust approach for forensic investigation. For Res Crim Int J 2(1):1–4

    Google Scholar 

  • Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17(6):580–588

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Wu Y, Cao B (2014) Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol 98(20):8457–8468

    Article  CAS  PubMed  Google Scholar 

  • Murty B, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Novobrantseva TI, Borodovsky A, Wong J, Klebanov B, Zafari M, Yucius K, Querbes W, Ge P, Ruda VM, Milstein S, Speciner L, Duncan R, Barros S, Basha G, Cullis P, Akinc A, Donahoe JS, Narayanannair Jayaprakash K, Jayaraman M, Bogorad RL, Love K, Whitehead K, Levins C, Manoharan M, Swirski FK, Weissleder R, Langer R, Anderson DG, de Fougerolles A, Nahrendorf M, Koteliansky V (2012) Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol Ther Nucleic Acids 1:1–13

    Article  CAS  Google Scholar 

  • Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 19(7):1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter AL, Youtie J (2009) Where does nanotechnology belong in the map of science? Nat Nanotechnol 4(9):534–536

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: an agriculture paradigm. Springer Nature, Singapore. isbn:978-981-10-4573-8

    Google Scholar 

  • Prasad R, Kumar V, Kumar M (2017c) Nanotechnology: food and environmental paradigm. Springer Nature, Singapore. isbn:978-981-10-4678-0

    Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811–1815

    Article  CAS  Google Scholar 

  • Saiyed ZM, Ramchand CN, Telang SD (2008) Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. J Phys Condens Matter 20(20):1–5

    Article  CAS  Google Scholar 

  • Sakaguchi N, Kojima C, Harada A, Koiwai K, Shimizu K, Emi N, Kono K (2006) Enhancement of transfection activity of lipoplexes by complexation with transferrin-bearing fusogenic polymer-modified liposomes. Int J Pharm 325(1–2):186–190

    Article  CAS  PubMed  Google Scholar 

  • Saylan Y, Uzun L, Denizli A (2014) Alanine functionalized magnetic nanoparticles for reversible amyloglucosidase immobilization. Ind Eng Chem Res 54(1):454–461

    Article  CAS  Google Scholar 

  • Saylan Y, Yılmaz F, Derazshamshir A, Yılmaz E, Denizli A (2017) Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor. J Mol Recognit 30(9):e2631

    Article  CAS  Google Scholar 

  • Sebastianelli A, Sen T, Bruce IJ (2008) Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Lett Appl Microbiol 46(4):488–491

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šefčovičová J, Tkac J (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chem Pap 69(1):42–53

    Google Scholar 

  • Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13(9):2373–2384

    Article  CAS  Google Scholar 

  • Shan Z, Zhou Z, Chen H, Zhang Z, Zhou Y, Wen A, Oakes KD, Servos MR (2012) PCR-ready human DNA extraction from urine samples using magnetic nanoparticles. J Chromatogr B 881-882:63–68

    Article  CAS  Google Scholar 

  • Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

    Article  PubMed  PubMed Central  Google Scholar 

  • Suman, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY (2014) The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hemat 89(3):352–357

    Article  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474

    Article  CAS  PubMed  Google Scholar 

  • Valentini L, Bon SB, Signetti S, Tripathi M, Iacob E, Pugno NM (2016) Fermentation based carbon nanotube multifunctional bionic composites. Sci Rep-UK 6:27031 (1-9)

    Google Scholar 

  • Valentini L, Bittolo Bon S, Pugno NM (2017) Graphene and carbon nanotube auxetic rubber bionic composites with negative variation of the electrical resistance and comparison with their nonbionic counterparts. Adv Funct Mater 27(24):1606526 (1-8)

    Article  CAS  Google Scholar 

  • Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133(7):835–845

    Article  CAS  PubMed  Google Scholar 

  • Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TTS, Bisker G, Liu P, Strano MS (2017) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater 16(2):264–272

    Article  CAS  PubMed  Google Scholar 

  • Yi L, Huang Y, Wu T, Wu J (2013) A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients. Neural Regen Res 8(32):3036–3046

    PubMed  PubMed Central  Google Scholar 

  • Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, Ishmuchametova DG, Fakhrullin RF (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal Methods-UK 3(3):509–513

    Article  CAS  Google Scholar 

  • Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, Guo Y, Chen J (2010) DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm 390(2):198–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C (2011) A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources 196(13):5402–5407

    Article  CAS  Google Scholar 

  • Zhou ZW, Kadarn US, Irudayaraj J (2013) One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles. Anal Biochem 442(2):249–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necdet Sağlam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saylan, Y., Yavuz, H., Ülger, C., Denizli, A., Sağlam, N. (2019). Introduction to Nanoscience, Nanomaterials, Nanocomposite, Nanopolymer, and Engineering Smart Materials. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16534-5_1

Download citation

Publish with us

Policies and ethics