Skip to main content

Immunohistochemistry in Breast Cancer

  • Chapter
  • First Online:
Practical Breast Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

Abstract

Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are tumor markers for breast cancer and are recommended for use on all primary breast cancers and, more recently, on metastatic breast cancer. They are critical tumor markers for breast cancer patients as they are both prognostic (Tumors with expression of ER and PR and lack of overexpression of HER2 carry a better prognosis) and predictive (ER-positive tumor could be treated with hormonal therapy, and HER2-positive tumor could be treated with HER2-targeted therapy). Ki67, which is a proliferation marker, has not been recommended by the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) for routine testing for breast cancer due to its poor reproducibility among different labs; however, most cancer centers in the United States do use it routinely in their practice to guide clinical management. This chapter extensively discusses how to solve problems on these tumor biomarkers frequently and uncommonly encountered in clinical practice. The chapter also discusses prognostic and diagnostic values of p53, p16, androgen receptor (AR), CK5/6 and cancer stem cell markers for primary and metastatic triple-negative breast cancer (TNBC) which is a heterogeneous group of tumors having a poor survival and lacking targeted therapy. Differential immunohistochemistry for breast tumor marker positive metastatic non-breast carcinoma versus primary breast cancer is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammond ME, Hayes DF, Dowestt M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridges version). Arch Pathol Lab Med. 2010;134(7):e48–72.

    CAS  PubMed  Google Scholar 

  2. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17:1474–81.

    CAS  PubMed  Google Scholar 

  3. McCarty KS, Miller LS, Cox EB, Konrath J, McCarty KS Sr. Estrogen receptor analysis, correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 1985;109(8):716–21.

    PubMed  Google Scholar 

  4. Horwitz KB, Koseki Y, McGuire WL. Estrogen control of progesterone receptor in human breast cancer: role of estradiol and antiestrogen. Endocrinology. 1978;103(5):1742–51.

    CAS  PubMed  Google Scholar 

  5. Cui X, Schiff A, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implication for endocrine therapy. J Clin Oncol. 2005;23(30):7721–35.

    CAS  PubMed  Google Scholar 

  6. Shen T, Brandwein-Gensler M, Hameed O, Siegal GP, Wei S. Characterization of estrogen receptor-negative/progesterone receptor positive breast cancer. Hum Pathol. 2015;46:1776–84.

    CAS  PubMed  Google Scholar 

  7. Schroth W, Buttner SWF, Goletz S, Goletz S, Faißt S, Brinkmann F, et al. Clinical outcome and global gene expression data support the existence of the estrogen receptor-negative/progesterone receptor-positive invasive breast cancer phenotype. Breast Cancer Res Treat. 2016;155:85–97.

    CAS  PubMed  Google Scholar 

  8. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    CAS  PubMed  Google Scholar 

  9. van Ramshorst MS, Loo CE, Groen EJ, Winter-Warnars GH, Wesseling J, van Duijnhoven F, et al. MRI predicts pathologic complete response in HER2-positive breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat. 2017;164(1):99–106.

    PubMed  Google Scholar 

  10. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131(1):18–43.

    CAS  PubMed  Google Scholar 

  11. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendation for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.

    PubMed  Google Scholar 

  12. Wolff AC, Hammond ME, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast Cancer. American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med. 2018;142:1364–82.

    Google Scholar 

  13. Dennis J, Parsa R, Chau D, Koduru P, Peng Y, Fang Y, et al. Quantification of human epidermal growth factor receptor 2 immunohistochemistry using the Ventana image analysis system: correlation with gene amplification by fluorescence in situ hybridization: the importance of instrument validation for achieving high (>95%) concordance rate. Am J Surg Pathol. 2015;39(5):624–31.

    PubMed  Google Scholar 

  14. Yu J, Dabbs DJ, Shaui Y, Niemeier LA, Bhargava R. Classical-type lobular carcinoma with HER2 overexpression: clinical, histologic and hormonal receptor characteristics. Am J Clin Pathol. 2011;136:88–97.

    CAS  PubMed  Google Scholar 

  15. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast Cancer American society of clinical oncology/college of American pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.

    PubMed  Google Scholar 

  16. Klein ME, Dabbs DJ, Shuai Y, Brufsky AM, Jankowitz R, Puhalla SL, et al. Prediction of the Oncotype DX recurrence score: use of pathology-generated equations derived by linear regression analysis. Mod Pathol. 2013 May;26:658–64.

    PubMed  PubMed Central  Google Scholar 

  17. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–8.

    PubMed  Google Scholar 

  18. Ellis MJ, Tao Y, Luo J, A’Hern R, Evans DB, Bhatnagar AS, et al. Outcome prediction for estrogen receptor positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J Nalt Cancer Inst. 2008;100:1380–8.

    CAS  Google Scholar 

  19. Ellis MJ, Suman VJ, Hoon J, Goncalves R, Sanati S, Creighton CJ, et al. Ki67 proliferation index as a tool for chemotherapy decision during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons oncology group Z1031 trial (Alliance). J Clin Oncol. 2017;35(10):1061–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decision on adjuvant systemic therapy for women with early stage invasive breast cancer: American Society of Clinical Oncology practice guideline. J Clin Oncol. 2016;34:1134–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Coates AS, Winer EP, Coldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies – improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26:1533–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Han JS, Cao D, Molberg KH, Sarode VR, Rao R, Sutton LM, et al. Hormone receptor status rather than HER-2 status is significantly associated with increased Ki67 and p53 expression in triple-negative breast carcinomas, and high expression level of Ki67 but not p53 is significantly associated with axillary nodal metastasis in triple-negative and high grade non-triple negative breast carcinomas. Am J Clin Pathol. 2011;135:230–7.

    PubMed  Google Scholar 

  23. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. J Nalt Cancer Inst. 2011;103:1656–64.

    CAS  Google Scholar 

  24. Polley MY, Leung SCY, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JM, et al. An international study to increase concordance in Ki67 scoring. Mod Pathol. 2015;28:778–86.

    PubMed  Google Scholar 

  25. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Carbognin L, Sperduti S, Fabi A, Dieci MV, Kadrija D, Griguolo G, et al. Prognostic impact of proliferation for resected early stage “pure” invasive lobular carcinoma: cut-off analysis of Ki67 according to histology and clinical validation. Bresat. 2017;35:21–6.

    Google Scholar 

  27. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012 Jul;138(1):57–64.

    PubMed  Google Scholar 

  28. Asch-Kendrick R, Cimino-Mathews A. The role of GATA3 in breast carcinomas: a review. Hum Pathol. 2016 Feb;48:37–47.

    CAS  PubMed  Google Scholar 

  29. Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R, et al. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol. 2013 Jul;44(7):1341–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krings G, Nystrom M, Mehdi I, Vohra P, Chen YY. Diagnostic utility and sensitivities of GATA3 antibodies in triple-negative breast cancer. Hum Pathol. 2014 Nov;45(11):2225–32.

    CAS  PubMed  Google Scholar 

  31. Dang DN, Raj G, Sarode V, Molberg KH, Vadlamudi RK, Peng Y. Significantly increased PELP1 protein expression in primary and metastatic triple-negative breast carcinoma: comparison with GATA3 expression and PELP1’s potential role in triple-negative breast carcinoma. Hum Pathol. 2015 Dec;46(12):1829–35.

    CAS  PubMed  Google Scholar 

  32. Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al. Gata 3 – a multispecific but potentially useful marker in surgical pathology – a systematic analysis of 2500 epithelial and non-epithelial tumors. Am J Surg Pathol. 2014 Jan;38(1):13–22.

    PubMed  PubMed Central  Google Scholar 

  33. Loibl S, Müller BM, von Minckwitz G, Schwabe M, Roller M, Darb-Esfahani S, et al. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011 Nov;130(2):477–87.

    CAS  PubMed  Google Scholar 

  34. Park S, Koo JS, Kim MS, Park HS, Lee JS, Lee JS, et al. Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol. 2011 Aug;22(8):1755–62.

    CAS  PubMed  Google Scholar 

  35. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.

    PubMed  PubMed Central  Google Scholar 

  36. Basile D, Cinausero M, Iacono D, Bonotto M, Vitale MG, Gerratana L, et al. Androgen receptor in estrogen receptor positive breast cancer: beyond expression. Cancer Treat Rev. 2017;61:15–22.

    CAS  PubMed  Google Scholar 

  37. Sutton LM, Cao D, Sarode V, Molberg KH, Torgbe K, Haley B, et al. Decreased androgen receptor expression is associated with distant metastases in patients with androgen receptor-expressing triple-negative breast carcinoma. Am J Clin Pathol. 2012 Oct;138(4):511–6.

    PubMed  Google Scholar 

  38. Lehmann BD, Bauer JA, Chen SME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011 Jul;121(7):2750–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu R, Dawood S, Holmes MD, Collins LC, Schnitt SJ, Cole K, et al. Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res. 2011 Apr 1;17(7):1867–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.

    CAS  PubMed  Google Scholar 

  41. Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, et al. Expression of androgen receptors in primary breast cancer. AnnOncol. 2010;21(3):488–92.

    CAS  Google Scholar 

  42. Tang D, Xu S, Zhang Q, Zhao W. The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer. Med Oncol. 2012 Jun;29(2):526–33.

    CAS  PubMed  Google Scholar 

  43. Luo X, Shi YX, Li ZM, Jiang WQ. Expression and clinical significance of androgen receptor in triple negative breast cancer. Chin J Cancer. 2010 Jun;29(6):585–90.

    CAS  PubMed  Google Scholar 

  44. He J, Peng R, Yuan Z, Wang S, Peng J, Lin G, et al. Prognostic value of androgen receptor expression in operable triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol. 2012 Jun;29(2):406–10.

    CAS  PubMed  Google Scholar 

  45. Iacopetta D, Rechoum Y, Fuqua SAW. The role of androgen receptor in breast Cancer. Drug Discov Today Dis Mech. 2012;9(1–2):e19–27.

    PubMed  PubMed Central  Google Scholar 

  46. Barton VN, D’Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther. 2015;14(3):769–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast Cancer. Clin Cancer Res. 2013;19(19):5505–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dang D, Peng Y. Roles of p53 and p16 in triple-negative breast Cancer. Breast Cancer Manage. 2013;2:537–44.

    CAS  Google Scholar 

  49. Sugianto J, Sarode V, Peng Y. Ki-67 expression is increased in p16-expressing triple-negative breast carcinoma and correlates with p16 only in p53-negative tumors. Hum Pathol. 2014 Apr;45(4):802–9.

    CAS  PubMed  Google Scholar 

  50. Han JS, Cao D, Molberg KH, Sarode VR, Rao R, Sutton LM, et al. Hormone receptor status rather than HER2 status is significantly associated with increased Ki-67 and p53 expression in triple-negative breast carcinomas, and high expression of Ki-67 but not p53 is significantly associated with axillary nodal metastasis in triple-negative and high-grade non-triple-negative breast carcinomas. Am J Clin Pathol. 2011;135(2):230–7.

    PubMed  Google Scholar 

  51. Lee DS, Kim SH, Suh YJ, Kim S, Kim HK, Shim BY. Clinical implication of p53 overexpression in breast cancer patients younger than 50 years with a triple-negative subtype who undergo a modified radical mastectomy. Jpn J Clin Oncol. 2011;41(7):854–66.

    PubMed  Google Scholar 

  52. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16(Suppl 1):1–11.

    PubMed  Google Scholar 

  53. Biganzoli E, Coradini D, Ambrogi F, Garibaldi JM, Lisboa P, Soria D, et al. p53 status identifies two subgroups of triple-negative breast cancers with distinct biological features. Jpn J Clin Oncol. 2011;41(2):172–9.

    PubMed  Google Scholar 

  54. Subhawong AP, Subhawong T, Nassar H, Kouprina N, Begum S, Vang R, et al. Most basal-like breast carcinomas demonstrate the same Rb−/p16+ immunophenotype as the HPV-related poorly differentiated squamous cell carcinomas which they resemble morphologically. Am J Surg Pathol. 2009;33(2):163–75.

    PubMed  PubMed Central  Google Scholar 

  55. Bohn OL, Fuertes-Camilo M, Navarro L, Saldivar J, Sanchez-Sosa S. p16INK4a expression in basal-like breast carcinoma. Int J Clin Exp Pathol. 2010;3(6):600–7.

    PubMed  PubMed Central  Google Scholar 

  56. Arima Y, Hayashi N, Hayashi H, Sasaki M, Kai K, Sugihara E, et al. Loss of p16 expression is associated with the stem cell characteristics of surface markers and therapeutic resistance in estrogen receptor-negative breast cancer. Int J Cancer. 2012;130(11):2568–79.

    CAS  PubMed  Google Scholar 

  57. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368–76.

    CAS  PubMed  Google Scholar 

  58. Rakha E, Reis-Filho JS. Basal-like breast carcinoma: from expression profiling to routine practice. Arch Pathol Lab Med. 2009 Jun;133(6):860–8.

    PubMed  Google Scholar 

  59. Sutton LM, Han JS, Molberg KH, Sarode VR, Cao D, Rakheja D, et al. Intratumoral expression level of epidermal growth factor receptor and cytokeratin 5/6 is significantly associated with nodal and distant metastases in patients with basal-like triple-negative breast carcinoma. Am J Clin Pathol. 2010;134(5):782–7.

    CAS  PubMed  Google Scholar 

  60. Bhargava R, Beriwal S, McManus K, Dabbs DJ. CK5 is more sensitive than CK5/6 in identifying the “basal-like” phenotype of breast carcinoma. Am J Clin Pathol. 2008;130:724–30.

    CAS  PubMed  Google Scholar 

  61. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.

    CAS  PubMed  Google Scholar 

  62. Nogi H, Kobayashi T, Suzuki M, Tabei I, Kawase K, Toriumi Y, et al. EGFR as paradoxical predictor of chemosensitivity and outcome among triple-negative breast cancer. Oncol Rep. 2009;21(2):413–7.

    CAS  PubMed  Google Scholar 

  63. Dawson SJ, Provenzano E, Caldas C. Triple negative breast cancers: clinical and prognostic implications. Eur J Cancer. 2009;45(Suppl 1):27–40.

    PubMed  Google Scholar 

  64. Tan DS, Marchió C, Jones RL, Savage K, Smith IE, Dowsett M, et al. Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat. 2008;111(1):27–44.

    CAS  PubMed  Google Scholar 

  65. O’Conor CJ, Chen T, González I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med. 2018;12(7):813–20.

    PubMed  Google Scholar 

  66. Turner BM, Cagle PT, Sainz IM, Fukuoka J, Sehn SS, Jagirda J. Napsin a, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136(2):163–71.

    PubMed  Google Scholar 

  67. Bishop JA, Sharma R, Illei PB. Napsin a and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41(1):20–5.

    CAS  PubMed  Google Scholar 

  68. Robens J, Goldstein L, Gown AM, Schnitt SJ. Thyroid transcription Factor-1 expression in breast carcinomas. Am J Surg Pathol. 2010;34(12):1881–5.

    PubMed  Google Scholar 

  69. Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.

    PubMed  PubMed Central  Google Scholar 

  70. Lau SK, Chu PG, Weiss LM. Immunohistochemical expression of estrogen receptor in pulmonary adenocarcinoma. Appl Immunohistochem Mol Morphol. 2006;14(1):83–7.

    CAS  PubMed  Google Scholar 

  71. Gomez-Fernandez C, Mejias A, Walker G, Nadji M. Immunohistochemical expression of estrogen receptor in adenocarcinomas of the lung: the antibody factor. Appl Immunohistochem Mol Morphol. 2010;18(2):137–41.

    CAS  PubMed  Google Scholar 

  72. Dabbs DJ, Landreneau RJ, Raab SS, Maley RH, Tung MY, Silverman JF. Detection of estrogen receptor by immunohistochemistry in pulmonary adenocarcinoma. Ann Thorac Surg. 2002;73(2):403–5.

    PubMed  Google Scholar 

  73. Mar N, Vredenburgh JJ, Wasser JS. Targeting HER2 in the treatment of non-small cell lung cancer. Lung Cancer. 2015;87(3):220–5.

    PubMed  Google Scholar 

  74. Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Uehara T, Fujimoto M, et al. HER2 status in lung adenocarcinoma: a comparison of immunohistochemistry, fluorescence in situ hybridization (FISH), dual-ISH, and gene mutations. Lung Cancer. 2014;85(3):373–8.

    PubMed  Google Scholar 

  75. Georgiannos SN, Chin J, Goode AW, Sheaff M. Secondary neoplasms of the breast: a survey of the 20th century. Cancer. 2001;92:2259–66.

    CAS  PubMed  Google Scholar 

  76. Klingen TA, Klassen H, Aas H, Chen Y, Aksen LA. Secondary breast cancer: a 5-year population-based study with review of the literature. APMIS. 2009;117(10):762–7.

    PubMed  Google Scholar 

  77. Williams SA, Ehlers RA, Hunt KK, Yi M, Kuerer HM, Singletary SE, et al. Metastases to the breast from nonbreast solid neoplasms. Cancer. 2007;110:731–7.

    PubMed  Google Scholar 

  78. Kawaguchi KR, Lu FI, Kaplan R, Liu YF, Chadwick P, Chen Z, et al. In search of the ideal immunopanel to distinguish metastatic mammary carcinoma from primary lung carcinoma: a tissue microarray study of 207 cases. Appl Immunohistochem Mol Morphol. 2014;22:266–74.

    CAS  PubMed  Google Scholar 

  79. Peng Y, Butt Y, Chen B, Zhang X, Tang P. Update on immunohistochemistry in breast lesions. Arch Pathol Lab Med. 2017;141(8):1033–51.

    PubMed  Google Scholar 

  80. Saluja K, Peng Y. Metastatic ER positive lung adenocarcinoma to liver and breast mimicking recurrent breast carcinoma. Am J Clin Pathol. 2015;144(suppl 2):A258.

    Google Scholar 

  81. Nofech-Mozes S, Khalifa MA, Ismiil N, Saad RS, Hanna WM, Covens A, et al. Immunophenotyping of serous carcinoma of the female genital tract. Mod Pathol. 2008;21(9):1147–55.

    CAS  PubMed  Google Scholar 

  82. Recine MA, Deavers MT, Middleton LP, Silva EG, Malpica A. Serous carcinoma of the ovary and peritoneum with metastases to the breast and axillary lymph nodes: a potential pitfall. Am J Surg Pathol. 2004;28(12):1646–51.

    PubMed  Google Scholar 

  83. Farghaly H. Metastatic endometrial endometrioid carcinoma with clear cell changes to the breast: a case report. Ann Diagn Pathol. 2013;17(1):127–30.

    PubMed  Google Scholar 

  84. Li C1, Xia P, Tian T, Kou B, Nan K. Metastasis from endometrial carcinoma to bilateral breasts presenting as inflammatory breast lesions. Eur J Gynaecol Oncol. 2011;32(5):563–6.

    CAS  PubMed  Google Scholar 

  85. Hoefnagel LD, van de Vijver MJ, van Slooten HJ, Wesseling P, Wesseling J, Westenend PJ. Receptor conversion in distant breast cancer metastases. Breast Cancer Res. 2010;12(5):R75.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, P., Bui, M.M., Peng, Y. (2019). Immunohistochemistry in Breast Cancer. In: Peng, Y., Tang, P. (eds) Practical Breast Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-16518-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16518-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16517-8

  • Online ISBN: 978-3-030-16518-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics