Skip to main content

Invasive Ductal Carcinoma (NOS) of the Breast

  • Chapter
  • First Online:
Practical Breast Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1231 Accesses

Abstract

This chapter addresses frequently encountered questions in invasive breast carcinoma, not otherwise specified (NOS), with emphasis on clinically relevant diagnostic issues in the era of precision medicine. This chapter discusses how to correctly evaluate tumor response to neoadjuvant therapy in invasive breast carcinoma and the definition of pathologic complete response (pCR); the clinical significance of Oncotype DX test and indications for ordering the test; how to score tumor infiltrating lymphocytes (TILs); and the clinical significance of the TILs. This chapter also discusses tumor heterogeneity of triple-negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alva S, Shetty-Alva N. An update of tumor metastasis to the breast data. Arch Surg. 1999;134:450.

    CAS  PubMed  Google Scholar 

  2. Lee AH. The histological diagnosis of metastases to the breast from extramammary malignancies. J Clin Pathol. 2007;60:1333–41.

    PubMed  PubMed Central  Google Scholar 

  3. Recine MA, Deavers MT, Middleton LP, Silva EG, Malpica A. Serous carcinoma of the ovary and peritoneum with metastases to the breast and axillary lymph nodes: a potential pitfall. Am J Surg Pathol. 2004;28:1646–51.

    PubMed  Google Scholar 

  4. Davis DG, Siddiqui MT, Oprea-Ilies G, Stevens K, Osunkoya AO, Cohen C, et al. GATA-3 and FOXA1 expression is useful to differentiate breast carcinoma from other carcinomas. Hum Pathol. 2016;47:26–31.

    CAS  PubMed  Google Scholar 

  5. Kandalaft PL, Simon RA, Isacson C, Gown AM. Comparative sensitivities and specificities of antibodies to breast markers GCDFP-15, mammaglobin a, and different clones of antibodies to GATA-3: a study of 338 tumors using whole sections. Appl Immunohistochem Mol Morphol. 2016;24:609–14.

    CAS  PubMed  Google Scholar 

  6. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138:57–64.

    PubMed  Google Scholar 

  7. Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38:13–22.

    PubMed  PubMed Central  Google Scholar 

  8. Wells JM, Ginter PS, Liu Y, Chen Z, Narula N, Shin SJ. Evaluating the utility of trefoil factor 1 as a mammary-specific immunostain compared and in conjunction with GATA-3 and mammaglobin in the distinction between carcinoma of breast and lung. Am J Clin Pathol. 2015;144:444–51.

    CAS  PubMed  Google Scholar 

  9. Yaziji H, Gown AM. Immunohistochemical analysis of gynecologic tumors. Int J Gynecol Pathol. 2001;20:64–78.

    CAS  PubMed  Google Scholar 

  10. Ni YB, Tsang JY, Shao MM, Chan SK, Tong J, Ka-Fai T, et al. TTF-1 expression in breast carcinoma: an unusual but real phenomenon. Histopathology. 2014;64:504–11.

    PubMed  Google Scholar 

  11. Luo MH, Huang YH, Ni YB, Tsang JY, Chan SK, Shao MM, et al. Expression of mammaglobin and gross cystic disease fluid protein-15 in breast carcinomas. Hum Pathol. 2013;44:1241–50.

    CAS  PubMed  Google Scholar 

  12. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127:103–13.

    CAS  PubMed  Google Scholar 

  13. Matsushima S, Mori M, Adachi Y, Matsukuma A, Sugimachi K. S100 protein positive human breast carcinomas: an immunohistochemical study. J Surg Oncol. 1994;55:108–13.

    CAS  PubMed  Google Scholar 

  14. Domfeh AB, Carley AL, Striebel JM, Karabakhtsian RG, Florea AV, McManus K, et al. WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes. Mod Pathol. 2008;21:1217–23.

    CAS  PubMed  Google Scholar 

  15. Nonaka D, Chiriboga L, Soslow RA. Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol. 2008;32:1566–71.

    PubMed  Google Scholar 

  16. Gloyeske NC, Woodard AH, Elishaev E, Yu J, Clark BZ, Dabbs DJ, et al. Immunohistochemical profile of breast cancer with respect to estrogen receptor and HER2 status. Appl Immunohistochem Mol Morphol. 2015;23:202–8.

    CAS  PubMed  Google Scholar 

  17. Hou Y, Shen R, Chaudhary S, Tonkovich D, Li Z. Utility of different immunostains for diagnosis of metastatic breast carcinomas in both surgical and cytological specimens. Ann Diagn Pathol. 2017;30:21–7.

    PubMed  Google Scholar 

  18. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    CAS  PubMed  Google Scholar 

  19. Li X, Oprea-Ilies GM, Krishnamurti U. New developments in breast cancer and their impact on daily practice in pathology. Arch Pathol Lab Med. 2017;141:490–8.

    CAS  PubMed  Google Scholar 

  20. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci. 2009;106(33):13820–5.

    CAS  PubMed  Google Scholar 

  21. Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, Perou CM. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 2013;18:123–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rakha EA, Ellis IO. Triple-negative/basal-like breast cancer: review. Pathology. 2009;41:40–7.

    PubMed  Google Scholar 

  23. Tavassoéli FA, Devilee P, editors. WHO classification of tumours: pathology and genetics: tumours of the breast and female genital organs. Lyon: IARC; 2003.

    Google Scholar 

  24. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. WHO classification of tumours of the breast. Lyon: IARC; 2012.

    Google Scholar 

  25. Wei B, Ding T, Xing Y, Wei W, Tian Z, Tang F, et al. Invasive neuroendocrine carcinoma of the breast: a distinctive subtype of aggressive mammary carcinoma. Cancer. 2010;116:4463–73.

    PubMed  Google Scholar 

  26. Lopez-Bonet E, Alonso-Ruano M, Barraza G, Vazquez-Martin A, Bernadó L, Menendez JA. Solid neuroendocrine breast carcinomas: incidence, clinico-pathological features and immunohistochemical profiling. Oncol Rep. 2008;20:1369–74.

    PubMed  Google Scholar 

  27. Lillemoe TJ, Tsai ML, Swenson KK, Susnik B, Krueger J, Harris K, et al. Clinicopathologic analysis of a large series of microinvasive breast cancers. Breast J. 2018;24(4):574–9.

    CAS  PubMed  Google Scholar 

  28. Sue GR, Lannin DR, Killelea B, Chagpar AB. Predictors of microinvasion and its prognostic role in ductal carcinoma in situ. Am J Surg. 2013;206:478–81.

    PubMed  Google Scholar 

  29. Parikh RR, Haffty BG, Lannin D, Moran MS. Ductal carcinoma in situ with microinvasion: prognostic implications, long-term outcomes, and role of axillary evaluation. Int J Radiat Oncol Biol Phys. 2012;82:7–13.

    PubMed  Google Scholar 

  30. Shatat L, Gloyeske N, Madan R, O’Neil M, Tawfik O, Fan F. Microinvasive breast carcinoma carries an excellent prognosis regardless of the tumor characteristics. Hum Pathol. 2013;44:2684–9.

    PubMed  Google Scholar 

  31. Matsen CB, Hirsch A, Eaton A, Stempel M, Heerdt A, Van Zee KJ, et al. Extent of microinvasion in ductal carcinoma in situ is not associated with sentinel lymph node metastases. Ann Surg Oncol. 2014;21:3330–5.

    PubMed  PubMed Central  Google Scholar 

  32. Gojon H, Fawunmi D, Valachis A. Sentinel lymph node biopsy in patients with microinvasive breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2014;40:5–11.

    CAS  PubMed  Google Scholar 

  33. Hanna MG, Jaffer S, Bleiweiss IJ, Nayak A. Re-evaluating the role of sentinel lymph node biopsy in microinvasive breast carcinoma. Mod Pathol. 2014;27:1489–98.

    CAS  PubMed  Google Scholar 

  34. Lyons JM 3rd, Stempel M, Van Zee KJ, Cody HS 3rd. Axillary node staging for microinvasive breast cancer: is it justified? Ann Surg Oncol. 2012;19:3416–21.

    PubMed  Google Scholar 

  35. Margalit DN, Sreedhara M, Chen YH, Catalano PJ, Nguyen PL, Golshan M, et al. Microinvasive breast cancer: ER, PR, and HER-2/neu status and clinical outcomes after breast-conserving therapy or mastectomy. Ann Surg Oncol. 2013;20:811–8.

    PubMed  Google Scholar 

  36. Gyorffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res. 2015;17:11.

    PubMed  PubMed Central  Google Scholar 

  37. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34:1134–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    CAS  PubMed  Google Scholar 

  39. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    CAS  PubMed  Google Scholar 

  40. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28:1829–34.

    PubMed  Google Scholar 

  41. Klein ME, Dabbs DJ, Shuai Y, Brufsky AM, Jankowitz R, Puhalla SL, et al. Prediction of the Oncotype DX recurrence score: use of pathology-generated equations derived by linear regression analysis. Mod Pathol. 2013;26:658–64.

    PubMed  PubMed Central  Google Scholar 

  42. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ, et al. Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22:1736–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906.

    PubMed  PubMed Central  Google Scholar 

  44. Polley MY, Leung SC, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JM, et al. An international study to increase concordance in Ki67 scoring. Mod Pathol. 2015;28:778–86.

    PubMed  Google Scholar 

  45. Rakha EA, Martin S, Lee AH, Morgan D, Pharoah PD, Hodi Z, et al. The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer. 2012;118:3670–80.

    PubMed  Google Scholar 

  46. Lee AK, DeLellis RA, Silverman ML, Heatley GJ, Wolfe HJ. Prognostic significance of peritumoral lymphatic and blood vessel invasion in node-negative carcinoma of the breast. J Clin Oncol. 1990;8:1457–65.

    CAS  PubMed  Google Scholar 

  47. Song YJ, Shin SH, Cho JS, Park MH, Yoon JH, Jegal YJ. The role of lymphovascular invasion as a prognostic factor in patients with lymph node-positive operable invasive breast cancer. J Breast Cancer. 2011;14:198–203.

    PubMed  PubMed Central  Google Scholar 

  48. Tan BY, Thike AA, Ellis IO, Tan PH. Clinicopathologic characteristics of solid papillary carcinoma of the breast. Am J Surg Pathol. 2016;40:1334–42.

    PubMed  Google Scholar 

  49. Nassar H, Qureshi H, Adsay NV, Visscher D. Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol. 2006;30:501–7.

    PubMed  Google Scholar 

  50. Nicolas MM, Wu Y, Middleton LP, Gilcrease MZ. Loss of myoepithelium is variable in solid papillary carcinoma of the breast. Histopathology. 2007;51:657–65.

    CAS  PubMed  Google Scholar 

  51. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25:4414–22.

    PubMed  Google Scholar 

  52. Symmans WF, Wei C, Gould R, Yu X, Zhang Y, Liu M, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol. 2017;35:1049–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bossuyt V, Provenzano E, Symmans WF, Boughey JC, Coles C, Curigliano G, et al. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Ann Oncol. 2015;26:1280–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al. American joint committee on cancer (AJCC) cancer staging manual. 8th ed. New York: Springer; 2017.

    Google Scholar 

  55. Cheng E, Ko D, Nguyen M, Moo TA, Andreopoulou E, Hoda SA, et al. Residual pure intralymphatic breast carcinoma following neoadjuvant chemotherapy is indicative of poor clinical outcome, even in node-negative patients. Am J Surg Pathol. 2017;41:1275–82.

    PubMed  Google Scholar 

  56. Rabban JT, Glidden D, Kwan ML, Chen YY. Pure and predominantly pure intralymphatic breast carcinoma after neoadjuvant chemotherapy: an unusual and adverse pattern of residual disease. Am J Surg Pathol. 2009;33:256–63.

    PubMed  Google Scholar 

  57. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69:4116–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Weigelt B, Ng CK, Shen R, Popova T, Schizas M, Natrajan R, et al. Metaplastic breast carcinomas display genomic and transcriptomic heterogeneity [corrected]. Mod Pathol. 2015;28:340–51.

    CAS  PubMed  Google Scholar 

  59. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    CAS  PubMed  Google Scholar 

  60. Hennessy BT, Giordano S, Broglio K, Duan Z, Trent J, Buchholz TA, et al. Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol. 2006;17:605–13.

    CAS  PubMed  Google Scholar 

  61. Lester TR, Hunt KK, Nayeemuddin KM, Bassett RL Jr, Gonzalez-Angulo AM, Feig BW, et al. Metaplastic sarcomatoid carcinoma of the breast appears more aggressive than other triple receptor-negative breast cancers. Breast Cancer Res Treat. 2012;131:41–8.

    CAS  PubMed  Google Scholar 

  62. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368.

    PubMed  PubMed Central  Google Scholar 

  64. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19:5533–40.

    CAS  PubMed  Google Scholar 

  65. Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, et al. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010;33:335–51.

    PubMed  PubMed Central  Google Scholar 

  66. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–7.

    CAS  PubMed  Google Scholar 

  67. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.

    PubMed  PubMed Central  Google Scholar 

  68. Krishnamurti U, Wetherilt CS, Yang J, Peng L, Li X. Tumor-infiltrating lymphocytes are significantly associated with better overall survival and disease-free survival in triple-negative but not estrogen receptor-positive breast cancers. Hum Pathol. 2017;64:7–12.

    CAS  PubMed  Google Scholar 

  69. Li XB, Krishnamurti U, Bhattarai S, Klimov S, Reid MD, O’Regan R, et al. Biomarkers predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Am J Clin Pathol. 2016;145:871–8.

    CAS  PubMed  Google Scholar 

  70. Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol. 2010;22:113–24.

    PubMed  Google Scholar 

  71. Demaria S, Volm MD, Shapiro RL, Yee HT, Oratz R, Formenti SC, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res. 2001;7:3025–30.

    CAS  PubMed  Google Scholar 

  72. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26:259–71.

    CAS  PubMed  Google Scholar 

  73. Mao Y, Qu Q, Zhang Y, Liu J, Chen X, Shen K. The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. PLoS One. 2014;9:e115103.

    PubMed  PubMed Central  Google Scholar 

  74. Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.

    CAS  PubMed  Google Scholar 

  75. Gooch J, King TA, Eaton A, Dengel L, Stempel M, Corben AD, et al. The extent of extracapsular extension may influence the need for axillary lymph node dissection in patients with T1–T2 breast cancer. Ann Surg Oncol. 2014;21:2897–903.

    PubMed  PubMed Central  Google Scholar 

  76. Choi AH, Blount S, Perez MN, Chavez de Paz CE, Rodriguez SA, Surrusco M, et al. Size of extranodal extension on sentinel lymph node dissection in the American College of Surgeons Oncology Group Z0011 trial era. JAMA Surg. 2015;150:1141–8.

    PubMed  Google Scholar 

  77. Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25:938–48.

    CAS  PubMed  Google Scholar 

  79. Brunelli M, Manfrin E, Martignoni G, Miller K, Remo A, Reghellin D, et al. Genotypic intratumoral heterogeneity in breast carcinoma with HER2/neu amplification: evaluation according to ASCO/CAP criteria. Am J Clin Pathol. 2009;131:678–82.

    PubMed  Google Scholar 

  80. Striebel JM, Bhargava R, Horbinski C, Surti U, Dabbs DJ. The equivocally amplified HER2 FISH result on breast core biopsy: indications for further sampling do affect patient management. Am J Clin Pathol. 2008;129:383–90.

    CAS  PubMed  Google Scholar 

  81. Lewis JT, Ketterling RP, Halling KC, Reynolds C, Jenkins RB, Visscher DW. Analysis of intratumoral heterogeneity and amplification status in breast carcinomas with equivocal (2+) HER-2 immunostaining. Am J Clin Pathol. 2005;124:273–81.

    PubMed  Google Scholar 

  82. Hanna WM, Ruschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 2014;27:4–18.

    CAS  PubMed  Google Scholar 

  83. Ohlschlegel C, Zahel K, Kradolfer D, Hell M, Jochum W. HER2 genetic heterogeneity in breast carcinoma. J Clin Pathol. 2011;64:1112–6.

    CAS  PubMed  Google Scholar 

  84. Tubbs RR, Hicks DG, Cook J, Downs-Kelly E, Pettay J, Hartke MB, et al. Fluorescence in situ hybridization (FISH) as primary methodology for the assessment of HER2 status in adenocarcinoma of the breast: a single institution experience. Diagn Mol Pathol. 2007;16:207–10.

    CAS  PubMed  Google Scholar 

  85. Allison KH, Dintzis SM, Schmidt RA. Frequency of HER2 heterogeneity by fluorescence in situ hybridization according to CAP expert panel recommendations: time for a new look at how to report heterogeneity. Am J Clin Pathol. 2011;136:864–71.

    PubMed  Google Scholar 

  86. Chang MC, Malowany JI, Mazurkiewicz J, Wood M. ‘Genetic heterogeneity’ in HER2/neu testing by fluorescence in situ hybridization: a study of 2,522 cases. Mod Pathol. 2012;25:683–8.

    CAS  PubMed  Google Scholar 

  87. Murthy SS, Sandhya DG, Ahmed F, Goud KI, Dayal M, Suseela K, et al. Assessment of HER2/Neu status by fluorescence in situ hybridization in immunohistochemistry-equivocal cases of invasive ductal carcinoma and aberrant signal patterns: a study at a tertiary cancer center. Indian J Pathol Microbiol. 2011;54:532–8.

    PubMed  Google Scholar 

  88. Hirschmann A, Lamb TA, Marchal G, Padilla M, Diebold J. Simultaneous analysis of HER2 gene and protein on a single slide facilitates HER2 testing of breast and gastric carcinomas. Am J Clin Pathol. 2012;138:837–44.

    CAS  PubMed  Google Scholar 

  89. Li Z, Dabbs DJ, Cooper KL, Bhargava R. Dual HER2 gene protein assay: focused study of breast cancers with 2+ immunohistochemical expression. Am J Clin Pathol. 2015;143:451–8.

    CAS  PubMed  Google Scholar 

  90. Kurozumi S, Padilla M, Kurosumi M, Matsumoto H, Inoue K, Horiguchi J, et al. HER2 intratumoral heterogeneity analyses by concurrent HER2 gene and protein assessment for the prognosis of HER2 negative invasive breast cancer patients. Breast Cancer Res Treat. 2016;158:99–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bartlett AI, Starcyznski J, Robson T, Maclellan A, Campbell FM, van de Velde CJ, et al. Heterogeneous HER2 gene amplification: impact on patient outcome and a clinically relevant definition. Am J Clin Pathol. 2011;136:266–74.

    CAS  PubMed  Google Scholar 

  92. Lee HJ, Seo AN, Kim EJ, Jang MH, Suh KJ, Ryu HS, et al. HER2 heterogeneity affects trastuzumab responses and survival in patients with HER2-positive metastatic breast cancer. Am J Clin Pathol. 2014;142:755–66.

    PubMed  Google Scholar 

  93. Lee HJ, Kim JY, Park SY, Park IA, Song IH, Yu JH, et al. Clinicopathologic significance of the intratumoral heterogeneity of HER2 gene amplification in HER2-positive breast cancer patients treated with adjuvant Trastuzumab. Am J Clin Pathol. 2015;144:570–8.

    PubMed  Google Scholar 

  94. Hou Y, Nitta H, Wei L, Banks PM, Portier B, Parwani AV, et al. HER2 intratumoral heterogeneity is independently associated with incomplete response to anti-HER2 neoadjuvant chemotherapy in HER2-positive breast carcinoma. Breast Cancer Res Treat. 2017;166:447–57.

    CAS  PubMed  Google Scholar 

  95. Flanagan MB, Dabbs DJ, Brufsky AM, Beriwal S, Bhargava R. Histopathologic variables predict Oncotype DX recurrence score. Mod Pathol. 2008;21:1255–61.

    CAS  PubMed  Google Scholar 

  96. Hou Y, Tozbikian G, Zynger DL, Li Z. Using the modified Magee equation to identify patients unlikely to benefit from the 21-gene recurrence score assay (Oncotype DX assay). Am J Clin Pathol. 2017;147:541–8.

    CAS  PubMed  Google Scholar 

  97. Hou Y, Zynger DL, Li X, Li Z. Comparison of Oncotype DX with modified Magee equation recurrence scores in low-grade invasive carcinoma of breast. Am J Clin Pathol. 2017;148:167–72.

    CAS  PubMed  Google Scholar 

  98. Turner BM, Skinner KA, Tang P, Jackson MC, Soukiazian N, Shayne M, et al. Use of modified Magee equations and histologic criteria to predict the Oncotype DX recurrence score. Mod Pathol. 2015;28:921–31.

    PubMed  Google Scholar 

  99. Cockburn A, Yan J, Rahardja D, Euhus D, Peng Y, Fang Y, et al. Modulatory effect of neoadjuvant chemotherapy on biomarkers expression; assessment by digital image analysis and relationship to residual cancer burden in patients with invasive breast cancer. Hum Pathol. 2014;45:249–58.

    CAS  PubMed  Google Scholar 

  100. Kasami M, Uematsu T, Honda M, Yabuzaki T, Sanuki J, Uchida Y, et al. Comparison of estrogen receptor, progesterone receptor and her-2 status in breast cancer pre- and post-neoadjuvant chemotherapy. Breast. 2008;17:523–7.

    PubMed  Google Scholar 

  101. Tacca O, Penault-Llorca F, Abrial C, Mouret-Reynier MA, Raoelfils I, Durando X, et al. Changes in and prognostic value of hormone receptor status in a series of operable breast cancer patients treated with neoadjuvant chemotherapy. Oncologist. 2007;12:636–43.

    CAS  PubMed  Google Scholar 

  102. Chen S, Chen CM, Yu KD, Zhou RJ, Shao ZM. Prognostic value of a positive-to-negative change in hormone receptor status after neoadjuvant chemotherapy in patients with hormone receptor-positive breast cancer. Ann Surg Oncol. 2012;19:3002–11.

    PubMed  Google Scholar 

  103. Hirata T, Shimizu C, Yonemori K, Hirakawa A, Kouno T, Tamura K, et al. Change in the hormone receptor status following administration of neoadjuvant chemotherapy and its impact on the long-term outcome in patients with primary breast cancer. Br J Cancer. 2009;101:1529–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Parinyanitikul N, Lei X, Chavez-MacGregor M, Liu S, Mittendorf EA, Litton JK, et al. Receptor status change from primary to residual breast cancer after neoadjuvant chemotherapy and analysis of survival outcomes. Clin Breast Cancer. 2015;15:153–60.

    CAS  PubMed  Google Scholar 

  105. Lee HC, Ko H, Seol H, Noh DY, Han W, Kim TY, et al. Expression of immunohistochemical markers before and after neoadjuvant chemotherapy in breast carcinoma, and their use as predictors of response. J Breast Cancer. 2013;16:395–403.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Li, Z., Cui, X., Peng, Y. (2019). Invasive Ductal Carcinoma (NOS) of the Breast. In: Peng, Y., Tang, P. (eds) Practical Breast Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-16518-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16518-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16517-8

  • Online ISBN: 978-3-030-16518-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics