Skip to main content

Invertebrate Scavenging Communities

  • Chapter
  • First Online:
Carrion Ecology and Management

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 2))

Abstract

Invertebrate scavengers of terrestrial and aquatic carrion include a broad and enormously diverse grouping of various arthropods, nematodes, and molluscs. By far the most functionally important in terrestrial ecosystems are insects, especially the flies, with crustaceans performing this role in marine ecosystems, although a multi-trophic foodweb of numerous invertebrate taxa can be found at most carcasses in most environments. The occurrence of different taxa, and the dynamics of their colonization and various competitive interactions varies across terrestrial and aquatic realms, and is greatly influenced by geographic region, climate, habitat, season, and other biotic factors. This sub-chapter focuses on the invertebrate use of carrion in both terrestrial and aquatic ecosystems, and highlights the role of different groups of invertebrates, and the biotic and abiotic factors that influence their occurrence and succession at decaying carcasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addy K, Green L (1997) Oxygen and temperature. Natural resources facts. University of Rhode Island Cooperative Extension Fact Sheet No. 96-3

    Google Scholar 

  • Anderson GS (2000) Minimum and maximum developmental rates of some forensically significant Calliphoridae (Diptera). J Forensic Sci 45(4):824–832

    Article  CAS  PubMed  Google Scholar 

  • Anderson GS (2005) Effects of arson on forensic entomology evidence. Can Soc Forensic Sci J 38(2):49–67

    Article  Google Scholar 

  • Anderson GS (2009) Factors that influence insect succession on carrion. In: Byrd J, Castner E (eds) Forensic entomology: the utility of arthropods in legal investigations, 2nd edn. CRC Press, Boca Raton, pp 201–250

    Google Scholar 

  • Anderson GS (2010) Decomposition and invertebrate colonization of cadavers in coastal marine environments. In: Amendt J, Campobasso CP, Grassberger M, Goff ML (eds) Current concepts in forensic entomology. Springer, Berlin

    Google Scholar 

  • Anderson GS (2011) Comparison of decomposition rates and faunal colonization of carrion in indoor and outdoor environments. J Forensic Sci 56(1):136–142. https://doi.org/10.1111/j.1556-4029.2010.01539.x

    Article  PubMed  Google Scholar 

  • Anderson GS, Bell LS (2014) Deep coastal marine taphonomy: investigation into carcass decomposition in the Saanich Inlet, British Columbia using a baited camera. PLoS One 9(10):e110710. https://doi.org/10.1371/journal.pone.0110710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson GS, Bell LS (2016) Impact of marine submergence and season on faunal colonization and decomposition of pig carcasses in the Salish Sea. PLoS ONE 11(3):e0149107. https://doi.org/10.1371/journal.pone.0149107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson GS, Hobischak NR (2002) Determination of time of death for humans discovered in saltwater using aquatic organism succession and decomposition rates. Canadian Police Research Centre, Technical Report., Ottawa, ON

    Google Scholar 

  • Anderson GS, Hobischak NR (2004) Decomposition of carrion in the marine environment in British Columbia, Canada. Int J Legal Med 118(4):206–209

    CAS  PubMed  Google Scholar 

  • Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41(4):617–625

    Article  Google Scholar 

  • Angioy AM, Stensmyr MC, Urru I, Puliafito M, Collu I, Hansson BS (2004) Function of the heater: the dead horse arum revisited. Proc Biol Sci 271(Suppl 3):S13–S15. https://doi.org/10.1098/rsbl.2003.0111

    Article  PubMed  PubMed Central  Google Scholar 

  • Anton E, Niederegger S, Beutel RG (2011) Beetles and flies collected on pig carrion in an experimental setting in Thuringia and their forensic implications. Med Vet Entomol 25(4):353–364

    Article  CAS  PubMed  Google Scholar 

  • Archer MS (2000) Natural history observations of the native carrion beetle, Ptomaphila lacrymosa Schreibers (Coleoptera: Silphidae). Proc Royal Soc Vic 112:133–136

    Google Scholar 

  • Archer MS (2002) The ecology of invertebrate associations with vertebrate carrion in Victoria, with reference to forensic entomology. University of Melbourne, Melbourne

    Google Scholar 

  • Archer MS (2003) Annual variation in arrival and departure times of carrion insects at carcasses: implications for succession studies in forensic entomology. Austral J Zool 51(6):569–576. https://doi.org/10.1071/zo03053

    Article  Google Scholar 

  • Archer MS (2004) Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice 44(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Archer MS (2014) Comparative analysis of insect succession data from Victoria (Australia) using summary statistics vs. preceding mean ambient temperature models. J Forensic Sci 59:404–412

    Article  PubMed  Google Scholar 

  • Barrios M, Wolff M (2011) Initial study of arthropods succession and pig carrion decomposition in two freshwater ecosystems in the Colombian Andes. Forensic Sci Int 212(1-3):164–172

    Article  PubMed  Google Scholar 

  • Barton PS (2015) The role of carrion in ecosystems. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 273–290. https://doi.org/10.1201/b18819-16

    Chapter  Google Scholar 

  • Barton PS, Cunningham SA, Macdonald BC, McIntyre S, Lindenmayer DB, Manning AD (2013a) Species traits predict assemblage dynamics at ephemeral resource patches created by carrion. PLoS One 8(1):e53961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013b) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772

    Article  PubMed  Google Scholar 

  • Barton PS, Cunningham SA, Manning AD, Gibb H, Lindenmayer DB, Didham RK (2013c) The spatial scaling of beta diversity. Glob Ecol Biogeogr 22(6):639–647

    Article  Google Scholar 

  • Barton PS, Weaver HJ, Manning AD (2014) Contrasting diversity dynamics of phoretic mites and beetles associated with vertebrate carrion. Exp Appl Acarol 63:1–13

    Article  PubMed  Google Scholar 

  • Baz A, Cifrián B, Martín-Vega D, Baena M (2010) Phytophagous insects captured in carrion-baited traps in central Spain. Bull Insect 63:21–30

    Google Scholar 

  • Blackith RE, Blackith RM (1990) Insect infestations of small corpses. J Nat Hist 24:699–709

    Article  Google Scholar 

  • Boggs CL, Dau B (2004) Resource specialization in puddling Lepidoptera. Environ Entomol 33(4):1020–1024

    Article  Google Scholar 

  • Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Austral J Zool 5:1–12

    Article  Google Scholar 

  • Boyle S, Galloway A, Mason RT (1997) Human aquatic taphonomy in the Monterey Bay area. In: Haglund WD, Sorg MH (eds) Forensic taphonomy. The postmortem fate of human remains. CRC Press, Boca Raton, pp 605–613

    Google Scholar 

  • Braack LEO (1987) Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia 72(3):402–409

    Article  CAS  PubMed  Google Scholar 

  • Braig HR, Perotti MA (2009) Carcasses and mites. Exp Appl Acarol 49(1-2):45–84

    Article  PubMed  Google Scholar 

  • Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol Ann Rev 32:369–434

    Google Scholar 

  • Brodie B, Gries R, Martins A, VanLaerhoven S, Gries G (2014) Bimodal cue complex signifies suitable oviposition sites to gravid females of the common green bottle fly. Entomol Exp Appl 153(2):114–127. https://doi.org/10.1111/eea.12238

    Article  CAS  Google Scholar 

  • Brundage A, Benbow ME, Tomberlin JK (2014) Priority effects on the life-history traits of two carrion blow fly (Diptera, Calliphoridae) species. Ecol Entomol 39:539–547

    Article  Google Scholar 

  • Bucheli SR, Bytheway JA, Gangitano DA (2010) Necrophagous caterpillars provide human mtDNA evidence. J Forensic Sci 55(4):1130–1132. https://doi.org/10.1111/j.1556-4029.2010.01379.x

    Article  PubMed  Google Scholar 

  • Burkepile DE, Parker JD, Woodson CB, Mills HJ, Kubanek J, Sobecky PA, Hay ME (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831

    Article  PubMed  Google Scholar 

  • Byrd JH, Castner JL (2001) Insects of forensic importance. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthoprods in legal investigations. CRC Press, Boca Raton, pp 43–79. https://doi.org/10.1201/9781420036947.ch2

    Chapter  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1):12–24

    Article  CAS  PubMed  Google Scholar 

  • Chaloner DT, Wipfi MS (2002) Influence of decomposing Pacific salmon carcasses on macroinvertebrate growth and standing stock in southeastern Alaska streams. N Am Benthol Soc 21(3):430–442

    Article  Google Scholar 

  • Chapman RF, Sankey JHP (1955) The larger invertebrate fauna of three rabbit carcasses. J Anim Ecol 24(2):395–402

    Article  Google Scholar 

  • Charabidze D, Bourel B, Gosset D (2011) Larval-mass effect: characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci Int 211(1-3):61–66

    Article  PubMed  Google Scholar 

  • Chen C-P, Denlinger DL, Lee RE (1991) Seasonal VARIATION in generation time, diapause and cold hardiness in a central Ohio population of the flesh fly Sarcophaga bullata. Ecol Entomol 16(2):155–162

    Article  Google Scholar 

  • Chin HC, Marwi MA, Salleh AFM, Jeffery J, Omar B (2007) A preliminary study of insect succession on a pig carcass in a palm oil plantation in Malaysia. Trop Biomed 24(2):23–27

    Google Scholar 

  • Colless DH, McAlpine DK (1991) Diptera. In: Naumann ID (ed) The insects of Australia, vol 2, 2nd edn. Melbourne University Press, Melbourne, pp 717–786

    Google Scholar 

  • Colombini I, Chelazzi L (2003) Influence of marine allochthonous input on sandy beach communities. Oceanogr Mar Biol 41:115–159

    Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641

    Article  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  • Dahlgren TG, Wiklund H, Kallstrom B, Lundalv T, Smith CR, Glover AG (2006) A shallow-water whale-fall experiment in the north Atlantic. Cah Biol Mar 47:385–389

    Google Scholar 

  • Davies L (1999) Seasonal and spatial changes in blowfly production from small and large carcasses at Durham in lowland northeast England. Med Vet Entomol 13(3):245–251

    Article  CAS  PubMed  Google Scholar 

  • Denno RF, Cothran WR (1976) Competitive interaction and ecological strategies of sarcophagid and calliphorid flies inhabiting rabbit carrion. Ann Entomol Soc Am 69:109–113

    Article  Google Scholar 

  • Deonier CC (1940) Carcass temperatures and their relation to winter blowfly activity in the Southwest. J Econ Entomol 33(1):166–170

    Article  Google Scholar 

  • Dillon LC (1997) Insect succession on carrion in three biogeoclimatic zones in British Columbia. M.Sc., Simon Fraser University, Burnaby, BC

    Google Scholar 

  • Dillon LC, Anderson GS (1995) Forensic entomology: The use of insects in death investigations to determine elapsed time since death. Canadian Police Research Centre, TR-05-95, Ottawa, Ontario

    Google Scholar 

  • Early M, Goff ML (1986) Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawai’i. J Med Entomol 23:520–531

    Article  CAS  PubMed  Google Scholar 

  • Easton AM (1966) The Coleoptera of a dead fox (Vulpes vulpes L.); including two species new to Britain. Entomol Mon Mag 102:205–210

    Google Scholar 

  • Eggert A-K, Mulller JK (1997) Biparental care and social evolution in burying beetles: lesson from the larder. In: Choe JC, Crespi BC (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge, pp 216–236

    Chapter  Google Scholar 

  • Ellis RJ (1970) Alloperla stonefly nymphs: predators or scavengers on salmon eggs and alevins? Trans Am Fish Soc 4:677–683

    Article  Google Scholar 

  • Erikson CH, Resh VH, Lamberti BA (1996) Aquatic insect respiration. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Duboque, pp 29–40

    Google Scholar 

  • Erzinclioglu YZ (1980) On the role of Trichocera larvae (Diptera: trichoceridae) in the decomposition of carrion in winter. Naturalist 105:133–134

    Google Scholar 

  • Fenoglio ST, Agosta P, Cucco M (2005) Mass loss and macroinvertebrate colonisation of fish carcasses in riffles and pools of a NW Italian stream. Hydrobiologia 532:111–122

    Article  Google Scholar 

  • Fenoglio S, Merritt RW, Cummins KW (2014) Why do no specialized necrophagous species exist among aquatic insects? Freshwater Sci 33(3):711–715. https://doi.org/10.1086/677038

    Article  Google Scholar 

  • Fielding D, Newey S, van der Wal R, Irvine RJ (2014) Carcass provisioning to support scavengers: evaluating a controversial nature conservation practice. Ambio 43(6):810–819. https://doi.org/10.1007/s13280-013-0469-4

    Article  PubMed  Google Scholar 

  • Fontaine B, Bouchet P, Vanachterberg K, Alonsozarazaga M, Araujo R, Asche M, Aspock U, Audisio P, Aukema B, Bailly N (2007) The European union’s 2010 target: Putting rare species in focus. Biol Conserv 139(1-2):167–185. https://doi.org/10.1016/j.biocon.2007.06.012

    Article  Google Scholar 

  • Frederickx C, Dekeirsschieter J, Verheggen FJ, Haubruge E (2013) Host-habitat location by the parasitoid, nasonia vitripennis walker (Hymenoptera: Pteromalidae). J Forensic Sci 59:242–249. https://doi.org/10.1111/1556-4029.12267

    Article  CAS  PubMed  Google Scholar 

  • Fujikura K, Fujiwara Y, Kawato M (2006) A new species of Osedax (Annelida : Siboglinidae) associated with whale carcasses off Kyushu, Japan. Zool Sci 23(8):733–740

    Article  Google Scholar 

  • Fuller ME (1934a) The insect inhabitants of carrion : a study in animal ecology. CSIRO Bull 82:5–62

    Google Scholar 

  • Fuller ME (1934b) The early stages of Sciadocera rufomaculata White (Dipt. Phoridae). Proc Linnean Soc NSW 59:9–15

    Google Scholar 

  • Fuller ME (1935) Notes on Australasian Anisopodidae (Diptera). Proc Linnaean Soc NSW 60:291–302

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405(6783):220–227

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ, Lawton JH (1988) Patterns in the distribution and abundance of insect populations. Nature 331(6158):709–712

    Article  Google Scholar 

  • George KA, Archer MS, Toop T (2013) Abiotic environmental factors influencing blowfly colonisation patterns in the field. Forensic Sci Int 229(1-3):100–107. https://doi.org/10.1016/j.forsciint.2013.03.033

    Article  PubMed  Google Scholar 

  • Giller PS, Malmqvist B (1998) The biology of streams and rivers. Oxford University Press, Oxford

    Google Scholar 

  • Glover AG, Kallstrom B, Smith CR, Dahlgren TG (2005) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc R Soc B 272(1581):2587–2592

    Article  PubMed  PubMed Central  Google Scholar 

  • Glover AG, Wiklund H, Taboada S, Avila C, Cristobo J, Smith CR, Kemp KM, Jamieson AJ, Dahlgren TG (2013) Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor. Proc Biol Sci 280(1768):20131390. https://doi.org/10.1098/rspb.2013.1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Goddard J, Lago PK (1985) Notes on blowfly (Diptera: Calliphoridae) succession on carrion in Northern Mississippi. J Entomol Sci 20:312–317

    Article  Google Scholar 

  • Grassberger M, Frank C (2003) Temperature-related development of the parasitoid wasp Nasonia vitripennis as forensic indicator. Med Vet Entomol 17(3):257–262

    Article  CAS  PubMed  Google Scholar 

  • Haefner JN, Wallace JR, Merritt RW (2004) Pig decomposition in lotic aquatic systems: the potential use of algal growth in establishing a postmortem submersion interval (PMSI). J Forensic Sci 49(2):330–336

    Article  PubMed  Google Scholar 

  • Haglund WD (1993) Disappearance of soft tissue and the disarticulation of human remains from aqueous environments. J Forensic Sci 38:806–815

    CAS  PubMed  Google Scholar 

  • Hanski I (1987a) Carrion fly community dynamics: patchiness, seasonality and coexistence. Ecol Entomol 12(3):257–266

    Article  Google Scholar 

  • Hanski I (1987b) Nutritional ecology of dung- and carrion-feeding insects. In: Slanky F, Rodriguez J (eds) Nutritional ecology of insects, mites, and spiders. Wiley, New York, pp 837–884

    Google Scholar 

  • Haskell NH, McShaffrey DG, Hawley DA, Williams RE, Pless JE (1989) Use of aquatic insects in determining submersion interval. J Forensic Sci 34:622–632

    Article  CAS  PubMed  Google Scholar 

  • Hinton HE (1963) A monograph of the beetles associated with stored products, vol 1. Johnston Reprint Corporation, London

    Google Scholar 

  • Hobischak NR (1997) Freshwater invertebrate succession and decompositional studies on carrion in British Columbia. M.P.M., Simon Fraser University, Burnaby

    Google Scholar 

  • Hobischak NR, Anderson GS (2002) Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci 47(1):142–151

    Article  PubMed  Google Scholar 

  • Hobson RP (1932) Studies on the nutrition of blow-fly larvae. J Exp Biol 9:359–365

    CAS  Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology, vol I. Wiley, New York

    Google Scholar 

  • Hwang C, Turner BD (2005) Spatial and temporal variability of necrophagous Diptera from urban to rural areas. Med Vet Entomol 19(4):379–391

    Article  CAS  PubMed  Google Scholar 

  • Introna FJ, Suman TW, Smialek JE (1991) Sarcosaprophagous fly activity in Maryland. J Forensic Sci 36(1):238–243

    Article  PubMed  Google Scholar 

  • Ives AR (1991) Aggregation and coexistence in a carrion fly community. Ecol Monogr 61:75–94

    Article  Google Scholar 

  • Johnson AP, Wighton SJ, Wallman JF (2014) Tracking movement and temperature selection of larvae of two forensically important blow fly species within a “maggot mass”. J Forensic Sci 59(6):1586–1591. https://doi.org/10.1111/1556-4029.12472

    Article  PubMed  Google Scholar 

  • Jones WJ, Johnson SB, Rouse GW, Vrijenhoek RC (2008) Marine worms (genus Osedax) colonize cow bones. Proc Biol Sci 275(1633):387–391

    Article  PubMed  Google Scholar 

  • Kalinová B, Podskalská H, Růžička J, Hoskovec M (2009) Irresistable bouquet of death - how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses? Naturwissenschaften 96(8):889–899

    Article  PubMed  CAS  Google Scholar 

  • Kavazos CRJ, Wallman JF (2012) Community composition of carrion-breeding blowflies (Diptera: Calliphoridae) along an urban gradient in south-eastern Australia. Landsc Urban Plan 106(2):183–190

    Article  Google Scholar 

  • Keiper JB, Chapman EG, Foote BA (1997) Midge larvae (Diptera: Chironomidae) as indicators of postmortem submersion interval of carcasses in a woodland stream: a preliminary report. J Forensic Sci 42(6):1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Kelly JA, van der Linde TC, Anderson GS (2009) The influence of clothing and wrapping on carcass decomposition and arthropod succession during the warmer seasons in Central South Africa. J Forensic Sci 54(5):1105–1112

    Article  PubMed  Google Scholar 

  • Kouki J, Hanski I (1995) Population aggregation facilitates coexistence of many competing carrion fly species. Oikos 72:223–227

    Article  Google Scholar 

  • Magni PA, Venn C, Aquila I, Pepe F, Ricci P, Di Nunzio C, Ausania F, Dadour IR (2015) Evaluation of the floating time of a corpse found in a marine environment using the barnacle Lepas anatifera L. (Crustacea: Cirripedia: Pedunculata). Forensic Sci Int 247:e6–e10. https://doi.org/10.1016/j.forsciint.2014.11.016

    Article  PubMed  Google Scholar 

  • Manlove JD, Disney RH (2008) The use of Megaselia abdita (Diptera: Phoridae) in forensic entomology. Forensic Sci Int 175(1):83–84. https://doi.org/10.1016/j.forsciint.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  • Martín-Vega D, Baz A (2011) Could the ‘vulture restaurants’ be a lifeboat for the recently rediscovered bone-skippers (Diptera: Piophilidae)? J Insect Conserv 15(5):747–753. https://doi.org/10.1007/s10841-011-9429-0

    Article  Google Scholar 

  • Martin-Vega D, Baz A, Michelsen V (2010) Back from the dead: Thyreophora cynophila (Panzer, 1798) (Diptera: Piophilidae) ‘globally extinct’ fugitive in Spain. Syst Entomol 35(4):607–613. https://doi.org/10.1111/j.1365-3113.2010.00541.x

    Article  Google Scholar 

  • Matthews EG (1982) A guide to the genera of beetles of South Australia. Part 2 polyphaga: staphylinoidea and hydrophiloidea. South Australia Museum, Adelaide

    Google Scholar 

  • Matthews EG (1984) A guide to the genera of beetles of South Australia. Part 3: polyphaga: eucinetoidea, dascilloidea and scarabaeoidea. South Australia Museum, Adelaide

    Google Scholar 

  • Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2008) An initial study of insect succession and carrion decomposition in various forest habitats of Central Europe. Forensic Sci Int 180(2-3):61–69. https://doi.org/10.1016/j.forsciint.2008.06.015

    Article  PubMed  Google Scholar 

  • Matuszewski S, Bajerlein D, Konwerski S, Szpila K (2010) Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Sci Int 194(1-3):85–93

    Article  PubMed  Google Scholar 

  • Meierhofer I, Schwarz HH, Muller JK (1999) Seasonal variation in parental care, offspring development and reporoductive succees in the burying beetle, Nicrophorus vespillo. Ecol Entomol 24:73–79

    Article  Google Scholar 

  • Meiklejohn KA (2012) Taxonomy and systematics of the Australian Sarcophaga s.l. (Dipterea: Sarcophagidae). University of Wollongong, Wollongong

    Google Scholar 

  • Melis C, Teurlings I, Linnell JC, Andersen R, Bordoni A (2004) Influence of a deer carcass on Coleopteran diversity in a Scandinavian boreal forest: a preliminary study. Eur J Wildl Res 50:146–149. https://doi.org/10.1007/s10344-004-0051-2

    Article  Google Scholar 

  • Merritt RW, Wallace JR (2009) The role of aquatic insects in forensic investigations. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, pp 272–319. https://doi.org/10.1201/NOE0849392153.ch7

    Chapter  Google Scholar 

  • Michaud JP, Schoenly KG, Moreau G (2015) Rewriting ecological succession history: did carrion ecologists get there first? Q Rev Biol 90(1):45–66

    Article  PubMed  Google Scholar 

  • Minshall GW, Hitchcock E, Barnes JR (1991) Decomposition of rainbow trout (Oncorhynchus mykiss) carcasses in aforest stream ecosystem inhabited only by non-anadromous fish populations. Can J Fish Aquat Sci 48:191–195

    Article  Google Scholar 

  • Moore BP (1955) Notes on carrion Coleoptera in the Oxford district. Entomol Mon Mag 43:45–51

    Google Scholar 

  • Nicola SJ (1968) Scavenging by Alloperla (Plecoptera: Chloroperlidae) nymphs on dead pink salmon and chum salmon embryos. Can J Zool 46:787–796

    Article  Google Scholar 

  • Norris KR (1965) The bionomics of blowflies. Annu Rev Entomol 10:47–68

    Article  Google Scholar 

  • Norris KR (1966) Daily patterns of flight activity of blowflies (Calliphoridae: Diptera) in the Canberra district as indicated by trap catches. Aust J Zool 14:835–853

    Google Scholar 

  • O’Connor BM (2009) Astigmatid mites (Acari: Sarcoptiformes) of forensic interest. Exp Appl Acarol 49(1-2):125–133

    Article  Google Scholar 

  • O’Flynn MA, Moorehouse DE (1979) Species of Chrysomya as primary flies in carrion. J Aust Entomol Soc 19:31–32

    Article  Google Scholar 

  • Osmond DL, Line DE, Gale JA, Gannon RW, Knott CB, Bartenhagen KA, Turner MH et al (1995) Watersheds: water, soil and hydro-environmental decision support system

    Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  • Payne JA, King EW (1970) Coleoptera associated with pig carrion. Entomol Mon Mag 105:224–232

    Google Scholar 

  • Payne JA, King EW (1972) Insect succession and decomposition of pig carcasses in water. J Georgia Entomol Soc 73:153–162

    Google Scholar 

  • Peck SB (2001) Review of the carrion beetles of Australia and New Guinea (Coleoptera: Silphidae). Aust J Entomol 40:93–101

    Article  Google Scholar 

  • Perotti MA, Braig HR (2009) Phoretic mites associated with animal and human decomposition. Exp Appl Acarol 49(1-2):85–124

    Article  PubMed  Google Scholar 

  • Pinero FS (1997) Analysis of spatial and seasonal variability of carrion beetle (Coleoptera) assemblages in two arid zones of Spain. Environ Entomol 26(4):805–814

    Article  Google Scholar 

  • Pitkin BR (1989) Piophilidae. In: Evenhuis NL (ed) Catalog of the Diptera of the Australasian and Oceanian regions. Bishop Museum Press, Honolulu, p 533

    Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47:769–784

    Article  Google Scholar 

  • Pont AC (1973) Studies on Australian Muscidae (Diptera). IV a revision of the subfamilies Muscinae and Stomoxyinae. Aust J Zool Suppl Ser 21:129–296

    Article  Google Scholar 

  • Pont AC (1977) A revision of the Australian Fanniidae (Diptera: Calyptrata). Aust J Zool Suppl Ser 51:1–60

    Article  Google Scholar 

  • Putman RJ (1977) Dynamics of the blowfly, Calliphora erythrocephala, within carrion. J Anim Ecol 46(3):853–866

    Article  Google Scholar 

  • Putman RJ (1983) Carrion and dung: the decomposition of animal wastes, The institute of biology’s studies in biology, vol 156. Edward Arnold, London

    Google Scholar 

  • Richards CS, Williams KA, Villet MH (2009a) Predicting geographic distribution of seven blowfly species (Diptera: Calliphoridae) in South Africa. Afr Entomol 17(2):170–182

    Article  Google Scholar 

  • Richards CS, Price BW, Villet M (2009b) Thermal ecophysiology of seven carrion-feeding blowflies in Southern Africa. Entomol Exp Appl 131(1):11–19

    Article  Google Scholar 

  • Richter S (1993) Phoretic association between the dauerjuveniles of Rhabditis stammeri (Rhabditidae) and life history stages of the burying beetle Nicrophorus vespilloides. Nematologica 39(3):346–355

    Article  Google Scholar 

  • Rivers DB, Thompson C, Brogan R (2011) Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion. Bull Entomol Res 101(5):599–611. https://doi.org/10.1017/S0007485311000241

    Article  CAS  PubMed  Google Scholar 

  • Rochefort S, Giroux M, Savage J, Wheeler TA (2015) Key to forensically important piophilidae (Diptera) in the Nearctic region. Can J Arthropod Ident. https://doi.org/10.3752/cjai.2015.27

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305(5684):668–671

    Article  CAS  PubMed  Google Scholar 

  • Sakaris P (2013) A review of the effects of hydrologic alteration on fisheries and biodiversity and the management and conservation of natural resources in regulate driver systems. In: Bradley PM (ed) Environmental sciences: current perspectives in contaminant hydrology and water resources sustainability. Intech, London. https://doi.org/10.5772/55963

    Chapter  Google Scholar 

  • Santos WE, Carneiro LT, Alves ACF, Creao-Duarte AJ, Martins CF (2014) Stingless bees (Hymenoptera: Apidae: Meliponini) attracted to animal carcasses in the brazilian dry forest and implications for forensic entomology. Sociobiology 61(4):490–493

    Article  Google Scholar 

  • Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion-arthropod assemblages: discrete series or a continuum of change? Oecologia 73:191–202

    Article  Google Scholar 

  • Seastedt TR, Mameli L, Gridley K (1981) Arthropod use of invertebrate carrion. Am Midl Nat 105(1):124–129

    Article  Google Scholar 

  • Seevers CH, Herman LH (1978) A generic and tribal version of the North American Aleocharinae (Coleoptera: Staphylinidae). Fieldiana Zool 71:1–289

    Google Scholar 

  • Shalaby OA, deCarvalho LML, Goff ML (2000) Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the Island of Oahu, Hawaii. J Forensic Sci 45(6):1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Silveira OT, Esposito MC, dos Santos JN, Gemaque FE (2005) Social wasps and bees captured in carrion traps in a rainforest in Brazil. Entomol Sci 8(1):33–39

    Article  Google Scholar 

  • Simmons P (1925) The ham beetle, Necrobia rufipes De Geer. J Agric Res 30(9):845–863

    Google Scholar 

  • Slone DH, Gruner SV (2007) Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J Med Entomol 44(3):516–523

    Article  CAS  PubMed  Google Scholar 

  • Smith KGV (1986) A manual of forensic entomology. Trustees of The British Museum (Nat. Hist.)/Cornell University Press, London

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Smith K, Lavis ME (1974) Environmental influences on the temperature of a small upland stream. Oikos 26:228–236

    Article  Google Scholar 

  • Stevenson C, Childers DL (2004) Hydroperiod and seasonal effects on fish decomposition in an oligotrophic Everglades marsh. Wetlands 24(3):529–537

    Article  Google Scholar 

  • Sweeney BW, Vannote RL (1978) Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200:444–446

    Article  CAS  PubMed  Google Scholar 

  • Szpila K, Madra A, Jarmusz M, Matuszewski S (2015) Flesh flies (Diptera: Sarcophagidae) colonising large carcasses in Central Europe. Parasitol Res 114(6):2341–2348. https://doi.org/10.1007/s00436-015-4431-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Taboada S, Bas M, Leiva C, Garriga M, Sardá R, Avila C (2016) Life after death: shallow-water Mediterranean invertebrate communities associated with mammal bones. Mar Ecol 37(1):164–178. https://doi.org/10.1111/maec.12257

    Article  Google Scholar 

  • Tomberlin JK, Adler PH (1998) Seasonal colonization and decomposition of rat carrion in water and on land in an open field in South Carolina. J Med Entomol 35(5):704–709

    Article  CAS  PubMed  Google Scholar 

  • Vance GM, Vandyk JK, Rowley WA (1995) Device for sampling aquatic insects associated with carrion in water. J Forensic Sci 40(3):479–482

    Article  Google Scholar 

  • VanLaerhoven SL, Anderson GS (1999) Insect succession on buried carrion in two biogeoclimatic zones of British Columbia. J Forensic Sci 44(1):32–43

    Article  CAS  PubMed  Google Scholar 

  • Voss SC, Forbes SL, Dadour IR (2008) Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci Med Pathol 4(1):22–32

    Article  PubMed  Google Scholar 

  • Voss SC, Spafford H, Dadour IR (2009) Hymenopteran parasitoids of forensic importance: host associations, seasonality, and prevalence of parasitoids of carrion flies in Western Australia. J Med Entomol 46(5):1210–1219

    Article  PubMed  Google Scholar 

  • Voss SC, Spafford H, Dadour I (2010) Temperature-dependent development of the parasitoid Tachinaephagus zealandicus on five forensically important carrion fly species. Med Vet Entomol 24:189–198

    Article  CAS  PubMed  Google Scholar 

  • Wallace JR (2015) Aquatic vertebrate carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 247–272. https://doi.org/10.1201/b18819-15

    Chapter  Google Scholar 

  • Wallace JR, Merritt RW, Kimbirauskas RK, Benbow ME, McIntosh M (2008) Caddisflies assist with homicide case: determining a postmortem submersion interval using aquatic insects. J Forensic Sci 53(1):219–221

    Article  PubMed  Google Scholar 

  • Wallace JR, Byrd JH, LeBlanc HN, Cervenka VJ (2015) North America. In: Tomberlin JK, Benbow ME (eds) Forensic entomology. Contemporary topics in entomology. CRC Press, Boca Raton, pp 187–202. https://doi.org/10.1201/b18156-23

    Chapter  Google Scholar 

  • Wallman JF, Leys R, Hogendoorn K (2005) Molecular systematics of Australian carrion-breeding blowflies (Diptera : Calliphoridae) based on mitochondrial DNA. Invertebr Syst 19(1):1–15. https://doi.org/10.1071/is04023

    Article  CAS  Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117

    Article  Google Scholar 

  • Warren JA, Anderson GS (2013) Effect of fluctuating temperatures on the development of a forensically important blow fly, Protophormia terraenovae (Diptera: Calliphoridae). Environ Entomol 42(1):167–172. https://doi.org/10.1603/EN12123

    Article  PubMed  Google Scholar 

  • Wipfi MS, Hudson J, Caouette J (1998) Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in southeastern Alaska, U.S.A. Can J Fish Aquat Sci 55:1503–1511

    Article  Google Scholar 

  • Woodcock BA, Watt AD, Leather SR (2002) Aggregation, habitat quality and coexistence: a case study on carrion fly communities in slug cadavers. J Anim Ecol 71(1):131–140

    Article  Google Scholar 

  • Zhu J, Chaudhury MF, Tangtrakulwanich K, Skoda SR (2013) Attractants of the secondary screwworm, Cochliomyia macellaria (F.) released from Rotten chicken liver. J Chem Ecol 39(11-12):1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Zwick P (1979) Contributions to the knowledge of Australian Cholevidae (Catoptidae auct.; Coleoptera). Aust J Zool Suppl Ser 70:1056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail S. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, G.S., Barton, P.S., Archer, M., Wallace, J.R. (2019). Invertebrate Scavenging Communities. In: Olea, P., Mateo-Tomás, P., Sánchez-Zapata, J. (eds) Carrion Ecology and Management. Wildlife Research Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-16501-7_3

Download citation

Publish with us

Policies and ethics