Skip to main content

Extension Results for Lipschitz Mappings

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2241))

Abstract

In this chapter we present various extension results for Lipschitz functions obtained by Kirszbraun, McShane, Valentine and Flett—the analogs of Hahn-Banach and Tietze extension theorems. A discussion on the corresponding property for semi-Lipschitz functions defined on quasi-metric spaces and for Lipschitz functions with values in a quasi-normed space is included as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adimurthi, I.H. Biswas, Role of fundamental solutions for optimal Lipschitz extensions on hyperbolic space. J. Differ. Equ. 218(1), 1–14 (2005)

    MathSciNet  Google Scholar 

  2. A.V. Akopyan, A.S. Tarasov, A constructive proof of Kirszbraun’s theorem. Mat. Zametki 84(5), 781–784 (2008) [Russian; English translation in Math. Notes 84(5–6), 725–728 (2008)]

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Albiac, Nonlinear structure of some classical quasi-Banach spaces and F-spaces. J. Math. Anal. Appl. 340(2), 1312–1325 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Albiac, The role of local convexity in Lipschitz maps. J. Convex Anal. 18(4), 983–997 (2011)

    MathSciNet  MATH  Google Scholar 

  5. F. Albiac, J.L. Ansorena, Lipschitz maps and primitives for continuous functions in quasi-Banach spaces. Nonlinear Anal. 75(16), 6108–6119 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Albiac, J.L. Ansorena, On a problem posed by M. M. Popov. Studia Math. 211(3), 247–258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Albiac, J.L. Ansorena, Integration in quasi-Banach spaces and the fundamental theorem of calculus. J. Funct. Anal. 264(9), 2059–2076 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Albiac, J.L. Ansorena, Optimal average approximations for functions mapping in quasi-Banach spaces. J. Funct. Anal. 266(6), 3894–3905 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Albiac, J.L. Ansorena, On Lipschitz maps, martingales, and the Radon-Nikodým property for F-spaces. Mediterr. J. Math. 13(4), 1963–1980 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Alexander, V. Kapovitch, A. Petrunin, Alexandrov meets Kirszbraun, in Proceedings of the 17th Gökova Geometry-Topology Conference, Gökova, Turkey, May 31–June 4, 2010 (International Press, Somerville; Gökova: Gökova Geometry-Topology Conferences, 2011), pp. 88–109

    Google Scholar 

  11. P. Alestalo, D.A. Trotsenko, Plane sets allowing bilipschitz extensions. Math. Scand. 105(1), 134–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Alestalo, D.A. Trotsenko, J. Väisälä, The linear extension property of bi-Lipschitz mappings. Sibirsk. Mat. Zh. 44(6), 1226–1238 (2003)

    MathSciNet  MATH  Google Scholar 

  13. R. Alexander, The circumdisk and its relation to a theorem of Kirszbraun and Valentine. Math. Mag. 57(3), 165–169 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. F.J. Almgren, Almgren’s big regularity paper. Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2, ed. by V. Scheffer, J.E. Taylor (World Scientific Publishing, Singapore, 2000)

    Google Scholar 

  15. G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Aronsson, M.G. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41(4), 439–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Aschenbrenner, A. Fischer, Definable versions of theorems by Kirszbraun and Helly. Proc. Lond. Math. Soc. 102(3), 468–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Ball, Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2(2), 137–172 (1992)

    Article  MATH  Google Scholar 

  19. K. Ball, E.A. Carlen, E.H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115(3), 463–482 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Z.M. Balogh, K.S. Fässler, Rectifiability and Lipschitz extensions into the Heisenberg group. Math. Z. 263(3), 673–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Z.M. Balogh, U. Lang, P. Pansu, Lipschitz extensions of maps between Heisenberg groups. Ann. Inst. Fourier (Grenoble) 66(4), 1653–1665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Basso, Lipschitz extensions to finitely many points. Anal. Geom. Metr. Spaces 6(1), 174–191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, in Geometrical Aspects of Functional Analysis, Israel Semin. 1985–86. Lecture Notes in Mathematics, vol. 1267 (Springer, Berlin, 1987), pp. 157–167

    Chapter  Google Scholar 

  24. A. Bressan, A. Cortesi, Lipschitz extensions of convex-valued maps. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 80(7–12), 530–532 (1987)

    MathSciNet  MATH  Google Scholar 

  25. A. Brudnyi, Yu. Brudnyi, Simultaneous extensions of Lipschitz functions. Uspekhi Mat. Nauk 60(6), 53–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Brudnyi, Yu. Brudnyi, Metric spaces with linear extensions preserving Lipschitz condition. Am. J. Math. 129(1), 217–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu. Brudnyi, P. Shvartsman, Stability of the Lipschitz extension property under metric transforms. Geom. Funct. Anal. 12(1), 73–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Buneman, A note on the metric properties of trees. J. Combin. Theory Ser. B 17, 48–50 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Caselles, J.-M. Morel, C. Sbert, An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Caselles, J.-M. Morel, C. Sbert, An axiomatic approach to image interpolation. Trois applications des mathématiques. SMF Journ. Annu., vol. 1998 (Mathematical Society of France, Paris, 1998), pp. 15–38

    Google Scholar 

  31. I. Cîmpean, A remark on the proof of Cobzaş-Mustăţa theorem concerning norm preserving extension of convex Lipschitz functions. Studia Univ. Babeş-Bolyai Math. 57(3), 325–329 (2012)

    MathSciNet  MATH  Google Scholar 

  32. S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces. Frontiers in Mathematics (Birkhäuser/Springer, Basel, 2013)

    Book  MATH  Google Scholar 

  33. S. Cobzaş, C. Mustăţa, Norm-preserving extension of convex Lipschitz functions. J. Approx. Theory 24(3), 236–244 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Cobzaş, C. Mustăţa, Extension of Lipschitz functions and best approximation, in Research on the Theory of Allure, Approximation, Convexity and Optimization, ed. by E. Popovici (SRIMA, Cluj-Napoca, 1999), pp. 3–21

    Google Scholar 

  35. J. Czipszer, L. Gehér, Extension of functions satisfying a Lipschitz condition. Acta Math. Acad. Sci. Hungar. 6, 213–220 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Dacorogna, Direct Methods in the Calculus of Variations. 2nd edn. Applied Mathematical Sciences, vol. 78 (Springer, New York, 2008)

    Google Scholar 

  37. B. Dacorogna, W. Gangbo, Extension theorems for vector valued maps. J. Math. Pures Appl. 85(3), 313–344 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. D.G. de Figueiredo, L.A. Karlovitz, On the extension of contractions on normed spaces, in Nonlinear Functional Analysis (Proc. Sympos. Pure Math., vol. XVIII, Part 1, Chicago, Ill., 1968) (American Mathematical Society, Providence, 1970), pp. 95–104

    Google Scholar 

  39. D.G. de Figueiredo, L.A. Karlovitz, The extension of contractions and the intersection of balls in Banach spaces. J. Funct. Anal. 11, 168–178 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  40. C. De Lellis, E.N. Spadaro, Q-valued functions revisited. Mem. Am. Math. Soc. 991, i–v + 79 (2011)

    Google Scholar 

  41. F. Deutsch, S. Li, W. Mabizela, Helly extensions and best approximation, in Parametric Optimization and Related Topics, III (Güstrow, 1991). Approx. Optim., vol. 3 (Lang, Frankfurt am Main, 1993), pp. 107–120

    Google Scholar 

  42. A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. in Math. 53(3), 321–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Edelstein, A.C. Thompson, Contractions, isometries and some properties of inner-product spaces. Nederl. Akad. Wetensch. Proc. Ser. A Indag. Math. 29, 326–331 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York, 1969)

    Google Scholar 

  45. T.M. Flett, Extensions of Lipschitz functions. J. Lond. Math. Soc. 7(2), 604–608 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  46. D.H. Fremlin, Kirszbraun’s Theorem, http://www.essex.ac.uk/maths/people/fremlin/n11706.pdf

  47. L.M. García-Raffi, S. Romaguera, E.A. Sánchez Pérez, Extensions of asymmetric norms to linear spaces. Rend. Istit. Mat. Univ. Trieste 33(1–2), 113–125 (2002)

    MathSciNet  MATH  Google Scholar 

  48. J. Goblet, A selection theory for multiple-valued functions in the sense of Almgren. Ann. Acad. Sci. Fenn., Math. 31(2), 297–314 (2006)

    Google Scholar 

  49. J. Goblet, Lipschitz extension of multiple Banach-valued functions in the sense of Almgren. Houst. J. Math. 35(1), 223–231 (2009)

    MathSciNet  MATH  Google Scholar 

  50. G. Godefroy, De Grothendieck à Naor: une promenade dans l’analyse métrique des espaces de Banach. Gaz. Math. (151), 13–24 (2017) [French; translated into English in Eur. Math. Soc. Newsl. 107, 9–16 (2018)]

    Google Scholar 

  51. R. Gordon, Riemann integration in Banach spaces. Rocky Mountain J.Math. 21(3), 923–949 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Grünbaum, On a theorem of Kirszbraun. Bull. Res. Council Israel. Sect. F 7, 129–132 (1957/1958)

    Google Scholar 

  53. B. Grünbaum, A generalization of theorems of Kirszbraun and Minty. Proc. Am. Math. Soc. 13, 812–814 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  54. M.J. Hirn, E.Y. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions. Math. Ann. 359(3–4), 595–628 (2014)

    MathSciNet  MATH  Google Scholar 

  55. J.-B. Hiriart-Urruty, Extension of Lipschitz functions. J. Math. Anal. Appl. 77, 539–554 (1980) [English]

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Huang, Y. Li, On bilipschitz extensions in real Banach spaces. Abstr. Appl. Anal., 9 (2013) [Art. ID 765685]

    Google Scholar 

  57. T. Huuskonen, J. Partanen, J. Väisälä, Bi-Lipschitz extensions from smooth manifolds. Rev. Mat. Ibero Am. 11(3), 579–601 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. J.R. Isbell, Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  59. J.R. Isbell, Three remarks on injective envelopes of Banach spaces. J. Math. Anal. Appl. 27, 516–518 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  61. W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in Modern Analysis and Probability (New Haven, Conn., 1982). Contemporary Mathematics. vol. 26 (American Mathematical Society, Providence, 1984), pp. 189–206

    Google Scholar 

  62. W.B. Johnson, J. Lindenstrauss, G. Schechtman, Extensions of Lipschitz maps into Banach spaces, in Israel Seminar on Geometrical Aspects of Functional Analysis (1983/84) (Tel Aviv University, Tel Aviv, 1984), p. 15

    Google Scholar 

  63. W.B. Johnson, J. Lindenstrauss, G. Schechtman, Extensions of Lipschitz maps into Banach spaces. Isr. J. Math. 54(2), 129–138 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  64. N.J. Kalton, Curves with zero derivative in F-spaces. Glasg. Math. J. 22, 19–29 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  65. N.J. Kalton, The existence of primitives for continuous functions in a quasi-Banach space. Atti Semin. Mat. Fis. Univ. Modena 44(1), 113–117 (1996)

    MathSciNet  MATH  Google Scholar 

  66. N.J. Kalton, Extending Lipschitz maps into \(\mathcal C(K)\)-spaces. Isr. J. Math. 162, 275–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. N.J. Kalton, Extension of linear operators and Lipschitz maps into \(\mathcal C(K)\)-spaces. N. Y. J. Math. 13, 317–381 (2007)

    Google Scholar 

  68. N.J. Kalton, The nonlinear geometry of Banach spaces. Rev. Mat. Complut. 21(1), 7–60 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Karamardian, A further generalization of Kirszbraun’s theorem, in Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin) (Academic Press, New York, 1972), pp. 145–148

    Google Scholar 

  70. M.D. Kirszbraun, Über die zusammenziehenden und Lipschitzschen Transformationen. Fundam. Math. 22, 77–108 (1934) [German]

    Article  MATH  Google Scholar 

  71. E. Kopecká, Bootstrapping Kirszbraun’s extension theorem. Fund. Math. 217(1), 13–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. E. Kopecká, Extending Lipschitz mappings continuously. J. Appl. Anal. 18(2), 167–177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Lancien, B. Randrianantoanina, On the extension of Hölder maps with values in spaces of continuous functions. Isr. J. Math. 147, 75–92 (2005)

    Article  MATH  Google Scholar 

  74. U. Lang, B. Pavlović, V. Schroeder, Extensions of Lipschitz maps into Hadamard spaces. Geom. Funct. Anal. 10(6), 1527–1553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  75. U. Lang, T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not. (58), 3625–3655 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. U. Lang, V. Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature. Geom. Funct. Anal. 7(3), 535–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  77. J.R. Lee, A. Naor, Absolute Lipschitz extendability. C. R. Math. Acad. Sci. Paris 338(11), 859–862 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. J.R. Lee, A. Naor, Extending Lipschitz functions via random metric partitions. Invent. Math. 160(1), 59–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE Δ (u) = 0. Nonlinear Differ. Equ. Appl. 14(1–2), 29–55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. E. Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space. Geom. Funct. Anal. 19(4), 1101–1118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. J. Lindenstrauss, On nonlinear projections in Banach spaces. Mich. Math. J. 11, 263–287 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  82. Ph. Logaritsch, A. Marchese, Kirszbraun’s extension theorem fails for Almgren’s multiple valued functions. Arch. Math. (Basel) 102(5), 455–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  83. J. Luukkainen, J. Väisälä, Elements of Lipschitz topology. Ann. Acad. Sci. Fenn. Math. 3(1), 85–122 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Mabizela, The relationship between Lipschitz extensions, best approximations, and continuous selections. Quaest. Math. 14(3), 261–268 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  85. P. MacManus, Bi-Lipschitz extensions in the plane. J. Anal. Math. 66, 85–115 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  86. M.B. Marcus, G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes. Acta Math. 152(3–4), 245–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  87. J. Matoušek, Extension of Lipschitz mappings on metric trees. Comment. Math. Univ. Carolin. 31(1), 99–104 (1990)

    MathSciNet  MATH  Google Scholar 

  88. E. Matoušková, Extensions of continuous and Lipschitz functions. Can. Math. Bull. 43(2), 208–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  89. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valuers dans les espaces L p. Astérisque 11, 1–5 (1974)

    MATH  Google Scholar 

  90. S. Mazur, W. Orlicz, Sur les espaces métriques linéaires. I. Studia Math. 10, 184–208 (1948) [French]

    Article  MathSciNet  MATH  Google Scholar 

  91. E.J. McShane, Extension of range of functions. Bull. Am. Math. Soc. 40, 837–842 (1934) [English]

    Article  MathSciNet  MATH  Google Scholar 

  92. F. Mémoli, G. Sapiro, P. Thompson, Brain and surface warping via minimizing Lipschitz extensions. IMA Preprint Series, No. 20192 (University of Minnesota, Minneapolis, 2006), pp. 11

    Book  Google Scholar 

  93. F. Mémoli, G. Sapiro, P. Thompson, Geometric surface and brain warping via geodesic minimizing Lipschitz extensions, in 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability (2006), pp. 58–67

    Google Scholar 

  94. M. Mendel, A simple proof of Johnson-Lindenstrauss extension, arXiv:1803.03606v2 [math.MG], 2 (2018)

    Google Scholar 

  95. M. Mendel, A. Naor, A relation between finitary Lipschitz extension moduli, arXiv:1707.07289 [math.MG], 3 (2017)

    Google Scholar 

  96. E.J. Mickle, On the extension of a transformation. Bull. Am. Math. Soc. 55 (1949), 160–164

    Article  MATH  Google Scholar 

  97. R. Miculescu, Extensions of some locally Lipschitz maps. Bull. Math. Soc. Sci. Math. Roum. 41(3), 197–203 (1998)

    MathSciNet  MATH  Google Scholar 

  98. R. Miculescu, Approximating uniformly continuous bounded functions by Lipschitz functions. Rev. Roum. Math. Pures Appl. 44(2), 253–255 (1999)

    MathSciNet  MATH  Google Scholar 

  99. R. Miculescu, Approximations by Lipschitz functions generated by extensions. Real Anal. Exchange 28(1), 33–40 (2002/03)

    Article  MathSciNet  MATH  Google Scholar 

  100. V.A. Milman, Lipschitz extensions of linearly bounded functions. Mat. Sb. 189(8), 67–92 (1998)

    Google Scholar 

  101. G.J. Minty, On the extension of Lipschitz, Lipschitz-Hölder continuous, and monotone functions. Bull. Am. Math. Soc. 76, 334–339 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  102. C. Mustăţa, A characterization of semi-Chebyshevian sets in a metric space. Rev. Anal. Numér. Théor. Approx. 7(2), 169–170 (1978)

    MathSciNet  MATH  Google Scholar 

  103. C. Mustăţa, The extension of starshaped bounded Lipschitz functions. Rev. Anal. Numér. Théor. Approx. 9(1), 93–99 (1980)

    MathSciNet  MATH  Google Scholar 

  104. C. Mustăţa, On the extension of Hölder functions, in Seminar of Functional Analysis and Numerical Methods, Babeş-Bolyai University, Cluj-Napoca, Research Seminaries, vol. 85 (1985), pp. 84–92

    MathSciNet  Google Scholar 

  105. C. Mustăţa, On the Unicity of the Extension of Lipschitz Odd Functions, Seminar on Optimization Theory, Babeş-Bolyai University, Cluj-Napoca, Research Seminaries, vol. 87 (1987), pp. 75–80

    MathSciNet  MATH  Google Scholar 

  106. C. Mustăţa, An application of a theorem of McShane, in Seminar on Functional Analysis and Numerical Methods, Babeş-Bolyai University, Cluj-Napoca, Research Seminaries, vol. 89 (1989), pp. 75–84

    MathSciNet  MATH  Google Scholar 

  107. C. Mustăţa, Extension of Hölder functions and some related problems of best approximation, in Seminar on Mathematical Analysis, Babeş-Bolyai University, Cluj-Napoca, Research Seminaries, vol. 91 (1991), pp. 71–86

    MathSciNet  MATH  Google Scholar 

  108. C. Mustăţa, Uniqueness of the extension of semi-Lipschitz functions on quasi-metric spaces. Bul. Ştiinţ. Univ. Baia Mare Ser. B Fasc. Mat.-Inform. 16(2), 207–212 (2000)

    MathSciNet  MATH  Google Scholar 

  109. C. Mustăţa, Extensions of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Numér. Théor. Approx. 30(1), 61–67 (2001), Dedicated to the memory of Acad. Tiberiu Popoviciu

    Google Scholar 

  110. C. Mustăţa, On the extension of semi-Lipschitz functions on asymmetric normed spaces. Rev. Anal. Numér. Théor. Approx. 34(2), 139–150 (2005)

    MathSciNet  MATH  Google Scholar 

  111. C. Mustăţa, Extensions of semi-Hölder real valued functions on a quasi-metric space. Rev. Anal. Numér. Théor. Approx. 38(2), 164–169 (2009)

    MathSciNet  MATH  Google Scholar 

  112. C. Mustăţa, On the approximation of the global extremum of a semi-Lipschitz function. Mediterr. J. Math. 6(2), 169–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  113. C. Mustăţa, On the existence and uniqueness of extensions of semi-Hölder real-valued functions. Rev. Anal. Numér. Théor. Approx. 39(2), 134–140 (2010)

    MathSciNet  MATH  Google Scholar 

  114. C. Mustăţa, On the extensions preserving the shape of a semi-Hölder function. Results Math. 63(1–2), 425–433 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  115. A. Naor, A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between L p spaces. Mathematika 48(1–2), 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  116. A. Naor, Y. Rabani, On Lipschitz extension from finite subsets. Isr. J. Math. 219(1), 115–161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  117. A. Naor, Y. Peres, O. Schramm, S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J. 134(1), 165–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  118. V.K. Nguyen, T.N. Nguyen, Lipschitz extensions and Lipschitz retractions in metric spaces. Colloq. Math. 45(2), 245–250 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  119. V.K. Nguyen, T.N. Nguyen, Extending locally Lipschitz maps with values in an infinite-dimensional nuclear Fréchet space. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29(11–12), 609–616 (1981)

    MathSciNet  MATH  Google Scholar 

  120. A.M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comp. 74(251), 1217–1230 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  121. A.M. Oberman, An explicit solution of the Lipschitz extension problem. Proc. Am. Math. Soc. 136(12), 4329–4338 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  122. S. Ohta, Extending Lipschitz and Hölder maps between metric spaces. Positivity 13(2), 407–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  123. S.H. Park, Quotient mappings, Helly extensions, Hahn-Banach extensions, Tietze extensions, Lipschitz extensions, and best approximation. J. Korean Math. Soc. 29(2), 239–250 (1992)

    MathSciNet  MATH  Google Scholar 

  124. J. Partanen, J. Väisälä, Extension of bi-Lipschitz maps of compact polyhedra. Math. Scand. 72(2), 235–264 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  125. M.M. Popov, On integrability in F-spaces. Studia Math. 110(3), 205–220 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  126. S. Reich, S. Simons, Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem. Proc. Am. Math. Soc. 133(9), 2657–2660 (2005)

    MATH  Google Scholar 

  127. B. Ricceri, Smooth extensions of Lipschitzian real functions. Proc. Am. Math. Soc. 104(2), 641–642 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  128. M.A. Rieffel, Lipschitz extension constants equal projection constants, in Operator Theory, Operator Algebras, and Applications. Contemporary Mathematics, vol. 414 (American Mathematical Society, Providence, 2006), pp. 147–162

    Google Scholar 

  129. S. Rolewicz, Metric Linear Spaces. 2nd edn. (D. Reidel Publishing Company, Boston, 1985)

    Google Scholar 

  130. S. Romaguera, M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theory 103(2), 292–301 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  131. S. Romaguera, M. Sanchis, Properties of the normed cone of semi-Lipschitz functions. Acta Math. Hungar. 108(1–2), 55–70 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  132. S. Romaguera, J.M. Sánchez-Álvarez, M. Sanchis, On balancedness and D-completeness of the space of semi-Lipschitz functions. Acta Math. Hungar. 120(4), 383–390 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  133. A. Rosenfeld, “Continuous” functions on digital pictures. Pattern Recogn. Lett. 4, 177–184 (1986)

    Article  MATH  Google Scholar 

  134. A. Roşoiu, D. Frăţilă, On the Lipschitz extension constant for a complex-valued Lipschitz function. Stud. Univ. Babeş-Bolyai Math. 53(1), 101–108 (2008)

    MathSciNet  MATH  Google Scholar 

  135. I.J. Schoenberg, On a theorem of Kirzbraun and Valentine. Am. Math. Monthly 60, 620–622 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  136. S.O. Schönbeck, Extension of nonlinear contractions. Bull. Am. Math. Soc. 72, 99–101 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  137. S.O. Schönbeck, On the extension of Lipschitz maps. Ark. Mat. 7, 201–209 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  138. S. Sheffield, Ch.K. Smart, Vector-valued optimal Lipschitz extensions. Comm. Pure Appl. Math. 65(1), 128–154 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  139. M.A. Sofi, Weaker forms of continuity and vector-valued Riemann integration. Colloq. Math. 129(1), 1–6 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  140. M.A. Sofi, Some problems in functional analysis inspired by Hahn-Banach type theorems. Ann. Funct. Anal. AFA 5(2), 1–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  141. M.A. Sofi, Nonlinear aspects of certain linear phenomena in Banach spaces, in Applied Analysis in Biological and Physical Sciences. ICMBAA, Aligarh, June 4–6, 2015 (Springer, New Delhi, 2016), pp. 407–425

    Chapter  MATH  Google Scholar 

  142. M.A. Sofi, Riemann integrability under weaker forms of continuity in infinite dimensional space. arXiv:1612.00642 [math.FA], 18 (2016)

    Google Scholar 

  143. J.M. Steele, Certifying smoothness of discrete functions and measuring legitimacy of images. J. Complex. 5(3), 261–270 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  144. H. Triebel, A new approach to function spaces on quasi-metric spaces. Rev. Mat. Complut. 18(1), 7–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  145. I.G. Tsarkov, Extension of Hilbert-valued Lipschitz mappings. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (6), 9–16 (1999) [Russian; English translation in Moscow Univ. Math. Bull. 54(6), 7–14 (1999)]

    Google Scholar 

  146. P. Tukia, J. Väisälä, Bi-Lipschitz extensions of maps having quasiconformal extensions. Math. Ann. 269(4), 561–572 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  147. J. Väisälä, Bi-Lipschitz and quasisymmetric extension properties. Ann. Acad. Sci. Fenn. Ser. A I Math. 11(2), 239–274 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  148. F.A. Valentine, On the extension of a vector function so as to preserve a Lipschitz condition. Bull. Am. Math. Soc. 49, 100–108 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  149. F.A. Valentine, Contractions in non-Euclidean spaces. Bull. Am. Math. Soc. 50, 710–713 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  150. F.A. Valentine, A Lipschitz condition preserving extension for a vector function. Am. J. Math. 67, 83–93 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  151. N. Weaver, Lipschitz Algebras (World Scientific Publishing, River Edge, 1999)

    Book  MATH  Google Scholar 

  152. J.H. Wells, L.R. Williams, Embeddings and Extensions in Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84 (Springer, New York, 1975)

    Google Scholar 

  153. H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  154. H. Whitney, On the extension of differentiable functions. Bull. Am. Math. Soc. 50, 76–81 (1944)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cobzaş, Ş., Miculescu, R., Nicolae, A. (2019). Extension Results for Lipschitz Mappings. In: Lipschitz Functions. Lecture Notes in Mathematics, vol 2241. Springer, Cham. https://doi.org/10.1007/978-3-030-16489-8_4

Download citation

Publish with us

Policies and ethics