Skip to main content

Coronary Microvascular Disease

  • Chapter
  • First Online:
Textbook of Vascular Medicine

Abstract

Abnormalities in the function and structure of the coronary microcirculation can occur in the absence of obstructive coronary artery disease (CAD). In clinical practice, a significant proportion of patients with chest pain do not have obstructive CAD, and approximately 30–50% of these patients are believed to have coronary microvascular disease (CMD). CMD is typically defined as an inadequate increase in coronary blood flow during stress due to impaired vasodilatation of the arterioles or increased resistance in the coronary microvasculature. The diagnosis of CMD involves the assessment of microvascular function, which is determined by coronary flow reserve (CFR) and/or myocardial perfusion reserve (MPR). The causes and pathophysiology of CMD are not well understood, and thus its treatment mainly consists of the more established treatment strategies of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulton WF. Arterial anastomoses in the coronary circulation. I. Anatomical features in normal and diseased hearts demonstrated by stereoarteriography. Scott Med J. 1963;8:420–34.

    Article  CAS  Google Scholar 

  2. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11.

    Article  Google Scholar 

  3. Jespersen L, Hvelplund A, Abildstrom SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44.

    Article  Google Scholar 

  4. Graf S, Khorsand A, Gwechenberger M, Novotny C, Kletter K, Sochor H, et al. Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. J Nucl Med. 2007;48(2):175–81.

    PubMed  Google Scholar 

  5. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62.

    Article  CAS  Google Scholar 

  6. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.

    Article  Google Scholar 

  7. van de Hoef TP, Siebes M, Spaan JA, Piek JJ. Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J. 2015;36(47):3312–9a.

    Article  Google Scholar 

  8. Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107(25):3129–32.

    Article  Google Scholar 

  9. Gerber BL. Quantification of myocardial perfusion and myocardial perfusion reserve by positron emission tomography and cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2012;60(16):1556–7.

    Article  Google Scholar 

  10. Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62.

    Article  Google Scholar 

  11. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.

    Article  Google Scholar 

  12. Solberg OG, Ragnarsson A, Kvarsnes A, Endresen K, Kongsgard E, Aakhus S, et al. Reference interval for the index of coronary microvascular resistance. EuroIntervention. 2014;9(9):1069–75.

    Article  Google Scholar 

  13. Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer BE. Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol. 1991;68(10):996–1003.

    Article  CAS  Google Scholar 

  14. Chauhan A, Mullins PA, Taylor G, Petch MC, Schofield PM. Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J. 1997;18(1):60–8.

    Article  CAS  Google Scholar 

  15. Fragasso G, Chierchia SL, Arioli F, Carandente O, Gerosa S, Carlino M, et al. Coronary slow-flow causing transient myocardial hypoperfusion in patients with cardiac syndrome X: long-term clinical and functional prognosis. Int J Cardiol. 2009;137(2):137–44.

    Article  Google Scholar 

  16. Davenport AP, Maguire JJ. Endothelin. Handb Exp Pharmacol. 2006;176(Pt 1):295–329.

    Article  Google Scholar 

  17. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    Article  CAS  Google Scholar 

  18. de Nucci G, Thomas R, D’Orleans-Juste P, Antunes E, Walder C, Warner TD, et al. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988;85(24):9797–800.

    Article  Google Scholar 

  19. Vanhoutte PM. Endothelium and control of vascular function. State of the Art lecture. Hypertension. 1989;13(6 Pt 2):658–67.

    Article  CAS  Google Scholar 

  20. Yoon MH, Reriani M, Mario G, Rihal C, Gulati R, Lennon R, et al. Long-term endothelin receptor antagonism attenuates coronary plaque progression in patients with early atherosclerosis. Int J Cardiol. 2013;168(2):1316–21.

    Article  Google Scholar 

  21. McCulloch KM, Docherty CC, Morecroft I, MacLean MR. EndothelinB receptor-mediated contraction in human pulmonary resistance arteries. Br J Pharmacol. 1996;119(6):1125–30.

    Article  CAS  Google Scholar 

  22. Rafnsson A, Shemyakin A, Pernow J. Selective endothelin ETA and dual ET(A)/ET(B) receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. Life Sci. 2014;118(2):435–9.

    Article  CAS  Google Scholar 

  23. Halcox JP, Nour KR, Zalos G, Quyyumi AA. Coronary vasodilation and improvement in endothelial dysfunction with endothelin ET(A) receptor blockade. Circ Res. 2001;89(11):969–76.

    Article  CAS  Google Scholar 

  24. Mather KJ, Lteif AA, Veeneman E, Fain R, Giger S, Perry K, et al. Role of endogenous ET-1 in the regulation of myocardial blood flow in lean and obese humans. Obesity (Silver Spring). 2010;18(1):63–70.

    Article  CAS  Google Scholar 

  25. Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135(24):2426–41.

    Article  CAS  Google Scholar 

  26. Khalid N, Iqbal I, Coram R, Raza T, Fahsah I, Ikram S. Thrombolysis in myocardial infarction frame count in Takotsubo cardiomyopathy. Int J Cardiol. 2015;191:107–8.

    Article  Google Scholar 

  27. Lanza GA, Colonna G, Pasceri V, Maseri A. Atenolol versus amlodipine versus isosorbide-5-mononitrate on anginal symptoms in syndrome X. Am J Cardiol. 1999;84(7):854–6.. A8

    Article  CAS  Google Scholar 

  28. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994;23(3):652–7.

    Article  CAS  Google Scholar 

  29. Fabian E, Varga A, Picano E, Vajo Z, Ronaszeki A, Csanady M. Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol. 2004;94(5):652–5.

    Article  CAS  Google Scholar 

  30. Kaski JC. Cardiac syndrome X in women: the role of oestrogen deficiency. Heart. 2006;92(Suppl 3):iii5–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fulton WFM. Immersion radiography of injected specimens. Br J Radiol. 1963;36:687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Berry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidik, N.P., McCartney, P., Berry, C. (2019). Coronary Microvascular Disease. In: Touyz, R., Delles, C. (eds) Textbook of Vascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-16481-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16481-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16480-5

  • Online ISBN: 978-3-030-16481-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics