Skip to main content

Avian Population Studies in the Genomic Era

  • Chapter
  • First Online:
Avian Genomics in Ecology and Evolution

Abstract

Long-term studies on birds have played a pivotal role in addressing important questions in evolutionary biology, and avian biologists were quick at adopting new genetic tools. The integration of genetic work on birds has revolutionised the way we think about avian mating systems, for example. During the last decade, we have seen a tremendous decline in the cost of sequencing, making it possible to genotype or sequence hundreds or even thousands of individuals. These tools are offering an exciting new array of questions to be asked from long-term longitudinal studies on birds. We review here some of the genetic resources currently available to researchers studying avian population samples, some statistical approaches to analyse population-level genomic data and future questions that long-term studies on birds can provide insights into. It is clear that genomic approaches on long-term studies on birds have played, and will continue to play, an important role for addressing fundamental evolutionary questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  • Backstrom N, Brandstrom M, Gustafsson L, Qvarnstrom A, Cheng H, Ellegren H (2006) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174(1):377–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backstrom N, Karaiskou N, Leder EH, Gustafsson L, Primmer CR, Qvarnstrom A, Ellegren H (2008a) A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics 179(3):1479–1495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backstrom N, Fagerberg S, Ellegren H (2008b) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17(4):964–980

    Article  PubMed  CAS  Google Scholar 

  • Barrett RD, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12:767–780

    Article  CAS  PubMed  Google Scholar 

  • Barrett RD, Rogers SM, Schluter D (2008) Natural selection on a major armor gene in threespine stickleback. Science 322:255–257

    Article  CAS  PubMed  Google Scholar 

  • Bateson ZW, Hammerly SC, Johnson JA, Morrow ME, Whittingham LA, Dunn PO (2016) Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater’s prairie-chicken. Mol Ecol 25:4730–4744

    Article  CAS  PubMed  Google Scholar 

  • Beavis W, Smith O, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  • BĂ©rĂ©nos C, Ellis PA, Pilkington JG, Pemberton JM (2014) Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 23:3434–3451

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLoS Genet 10:e1004412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Boag PT, Grant PR (1978) Heritability of external morphology in Darwin’s finches. Nature 274:793–794. https://doi.org/10.1038/274793a0

    Article  Google Scholar 

  • Burke T, Bruford MW (1987) DNA fingerprinting in birds. Nature 327:149–152

    Article  CAS  PubMed  Google Scholar 

  • Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, Suh A, Dutoit L, BureÅ¡ S, Garamszegi LZ (2015) Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res 25:1656–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalloul RA et al (2010) Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8. https://doi.org/10.1371/journal.pbio.1000475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Los Campos G, Sorensen D, Gianola D (2015) Genomic heritability: what is it? PLoS Genet 11:e1005048

    Article  PubMed  CAS  Google Scholar 

  • Delmore KE, Toews DP, Germain RR, Owens GL, Irwin DE (2016) The genetics of seasonal migration and plumage color. Curr Biol 26:2167–2173

    Article  CAS  PubMed  Google Scholar 

  • Derks MF, Schachtschneider KM, Madsen O, Schijlen E, Verhoeven KJ, van Oers K (2016) Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elgvin TO, Trier CN, Torresen OK, Hagen IJ, Lien S, Nederbragt AJ, Ravinet M, Jensen H, Saetre GP (2017) The genomic mosaicism of hybrid speciation. Sci Adv 3:e1602996

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellegren H (2013) The evolutionary genomics of birds. Annu Rev Ecol Evol Syst 44:239–259

    Article  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63

    Article  PubMed  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, KĂ¼nstner A, Mäkinen H, Nadachowska-Brzyska K, Qvarnström A (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–760

    Article  CAS  PubMed  Google Scholar 

  • Evans SR, Gustafsson L (2017) Climate change upends selection on ornamentation in a wild bird. Nat Ecol Evol 1:0039

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group, Essex

    Google Scholar 

  • Farrell LL, Burke T, Slate J, McRae SB, Lank DB (2013) Genetic mapping of the female mimic morph locus in the ruff. BMC Genet 14:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Garant D, Kruuk LE, McCleery RH, Sheldon BC (2004) Evolution in a changing environment: a case study with great tit fledging mass. Am Nat 164:E115–E129

    Article  PubMed  Google Scholar 

  • Gering E, Johnsson M, Willis P, Getty T, Wright D (2015) Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Mol Ecol 24:2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  PubMed  Google Scholar 

  • Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL, Csillery K (2017) Genomic quantitative genetics to study evolution in the wild. Trends Ecol Evol 32:897–908

    Article  PubMed  Google Scholar 

  • Grant PR, Grant BR (1995) Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:241–251

    Article  PubMed  Google Scholar 

  • Griffith SC, Owens IP, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    Article  CAS  PubMed  Google Scholar 

  • Hagen IJ, Billing AM, Ronning B, Pedersen SA, Parn H, Slate J, Jensen H (2013) The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus). Mol Ecol Resour 13:429–439

    Article  CAS  PubMed  Google Scholar 

  • Hansson B, Sigeman H, Stervander M, Tarka M, Ponnikas S, Strandh M, Westerdahl H, Hasselquist D (2018) Contrasting results from GWAS and QTL mapping on wing length in great reed warblers. Mol Ecol Resour 18(4):867–876

    Article  CAS  PubMed  Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

    Google Scholar 

  • Hillier LW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–777

    Article  CAS  Google Scholar 

  • Hoekstra H (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:222–234

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45:776–783. https://doi.org/10.1038/ng.2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husby A, Visser ME, Kruuk LEB (2011) Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol 9:e1000585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husby A, Kawakami T, Ronnegard L, Smeds L, Ellegren H, Qvarnstrom A (2015) Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc R Soc B Biol Sci 282:20150156–20150156

    Article  CAS  Google Scholar 

  • Jensen H, Saether BE, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2003) Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J Evol Biol 16:1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J (2013) Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature:1–4

    Google Scholar 

  • Kardos M, Husby A, McFarlane SE, Qvarnstrom A, Ellegren H (2016) Whole genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour 16:727–741

    Article  CAS  PubMed  Google Scholar 

  • Kawakami T, Backstrom N, Burri R, Husby A, Olason P, Rice AM, Alund M, Qvarnstrom A, Ellegren H (2014) Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array. Mol Ecol Resour 14:1248–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller LF, Grant PR, Grant BR, Petren K (2001) Heritability of morphological traits in Darwin’s finches: misidentied paternity and maternal effects. Heredity 87:325–336

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen P, Husby A (2018a) Inference of genetic architecture from chromosome partitioning analyses is sensitive to genome variation, sample size, heritability and effect size distribution. Mol Ecol Resour 18(4):767–777

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen P, Husby A (2018b) Accounting for heteroscedasticity and censoring in chromosome partitioning analyses. Evol Lett 2(6):599–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  CAS  PubMed  Google Scholar 

  • Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2012) QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Mol Ecol 21:3704–3717

    Article  PubMed  Google Scholar 

  • Knief U, Schielzeth H, Backstrom N, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W (2017) Association mapping of morphological traits in wild and captive zebra finches: reliable within but not between populations. Mol Ecol 26(5):1285–1305

    Article  CAS  PubMed  Google Scholar 

  • Korsten P, Mueller JC, Hermannstadter C, Bouwman KM, Dingemanse NJ, Drent PJ, Liedvogel M, Matthysen E, van Oers K, van Overveld T, Patrick SC, Quinn JL, Sheldon BC, Tinbergen JM, Kempenaers B (2010) Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Mol Ecol 19:832–843

    Article  CAS  PubMed  Google Scholar 

  • Kraus RHS, Wink M (2015) Avian genomics—fledging into the wild! J Ornithol 156:851–865. https://doi.org/10.1007/s10336-015-1253-y

    Article  Google Scholar 

  • Kraus RHS et al (2011) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics 12:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus RHS, Van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC, HHT P (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55. https://doi.org/10.1111/mec.12098

    Article  CAS  PubMed  Google Scholar 

  • Kraus RHS et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15:295–305. https://doi.org/10.1111/1755-0998.12307

    Article  CAS  PubMed  Google Scholar 

  • KĂ¼pper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, Morgan TC, Karlionova N, Pinchuk P, Verkuil YI (2016) A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet 48:79

    Article  PubMed  CAS  Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Laine VN, Gossmann TI, Schachtschneider KM, Garroway CJ, Madsen O, Verhoeven KJ, De Jager V, Megens H-J, Warren WC, Minx P (2016) Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat Commun 7:10474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerova M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375

    Article  CAS  PubMed  Google Scholar 

  • Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, Kerje S, Gustafson U, Shi C, Zhang H (2016a) Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet 48:84

    Article  CAS  PubMed  Google Scholar 

  • Lamichhaney S, Han F, Berglund J, Wang C, AlmĂ©n MS, Webster MT, Grant BR, Grant PR, Andersson L (2016b) A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352:470–474

    Article  CAS  PubMed  Google Scholar 

  • Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, Labadie P, Geneste E, Couture P, Baudrimont M, Bernatchez L (2016) RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Mol Ecol 25:219–237

    Article  CAS  PubMed  Google Scholar 

  • Liebl AL, Schrey AW, Richards CL, Martin LB (2013) Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol 53:351–358

    Article  CAS  PubMed  Google Scholar 

  • Losos JB, Arnold SJ, Bejerano G, Brodie ED, Hibbett D, Hoekstra HE, Mindell DP, Monteiro A, Moritz C, Orr HA, Petrov DA, Renner SS, Ricklefs RE, Soltis PS, Turner TL (2013) Evolutionary biology for the 21st century. PLoS Biol 11:e1001466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundregan SL, Hagen IJ, Gohli J, Niskanen AK, Kemppainen P, Ringsby TH, Kvalnes T, Parn H, Ronning B, Holand H, Ranke PS, Batnes AS, Selvik LK, Lien S, Saether BE, Husby A, Jensen H (2018) Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis. Mol Ecol 27:3498–3514

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA

    Google Scholar 

  • MacColl ADC, Hatchwell BJ (2003) Heritability of parental effort in a passerine bird. Evolution 57:2191–2195

    Article  PubMed  Google Scholar 

  • Mackay T (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Malenfant RM, Coltman DW, Davis CS (2014) Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour 15(3):587–600

    Article  PubMed  CAS  Google Scholar 

  • Merilä J, Sheldon BC (2001) Avian quantitative genetics. In: Nolan V Jr, Thompson C (eds) Current Ornithology. Kluwer Academic, New York, pp 179–255

    Google Scholar 

  • Mueller JC, Korsten P, Hermannstaedter C, Feulner T, Dingemanse NJ, Matthysen E, van Oers K, van Overveld T, Patrick SC, Quinn JL, Riemenschneider M, Tinbergen JM, Kempenaers B (2013) Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4gene region in four great tit (Parus major) populations. Mol Ecol 22:2797–2809

    Article  CAS  PubMed  Google Scholar 

  • Mueller JC, Kuhl H, Timmermann B, Kempenaers B (2016) Characterization of the genome and transcriptome of the blue tit Cyanistes caeruleus: polymorphisms, sex-biased expression and selection signals. Mol Ecol Resour 16:549–561

    Article  CAS  PubMed  Google Scholar 

  • Mundy NI, Stapley J, Bennison C, Tucker R, Twyman H, Kim KW, Burke T, Birkhead TR, Andersson S, Slate J (2016) Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Curr Biol 26:1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H (2013) Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 9:e1003942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadeau NJ, Jiggins CD (2010) A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet 26:484–492

    Article  CAS  PubMed  Google Scholar 

  • Nadeau N, Mundy N, Gourichon D, Minvielle F (2007) Association of a single-nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica). Anim Genet 38:609–613

    Article  CAS  PubMed  Google Scholar 

  • Nichols JT (1908) Lawrence’s and Brewster’s Warblers and Mendelian inheritance. Auk 25:86–86

    Article  Google Scholar 

  • Ottenburghs J, Ydenberg RC, van Hooft P, Van Wieren SE, Prins HHT (2015) The Avian Hybrids Project: gathering the scientific literature on avian hybridization. Ibis 157(4):892–894

    Article  Google Scholar 

  • Ottenburghs J, Kraus RHS, van Hooft P, van Wieren SE, Ydenberg RC, Prins HHT (2017) Avian introgression in the genomic era. Avian Res 8:30

    Article  Google Scholar 

  • Poelstra JW, Ellegren H, Wolf J (2013) An extensive candidate gene approach to speciation: diversity, divergence and linkage disequilibrium in candidate pigmentation genes across the European crow hybrid zone. Heredity 111(6):467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma E, Charmantier A (2007) What ‘animal models’ can and cannot tell ornithologists about the genetics of wild populations. J Ornithol 148:S633–S642

    Article  Google Scholar 

  • Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, Tian S, Zhang J, Zhang R, Meng X, Zhang Y, Zhang Y, Zhu X, Wang W, Lambert D, Ericson PG, Subramanian S, Yeung C, Zhu H, Jiang Z, Li R, Lei F (2013) Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun 4:2071

    Article  PubMed  CAS  Google Scholar 

  • Qvarnström A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature 441:84–86

    Article  PubMed  CAS  Google Scholar 

  • Qvarnström A, Rice AM, Ellegren H (2010) Speciation in Ficedula flycatchers. Philos Trans R Soc B Biol Sci 365:1841–1852

    Article  Google Scholar 

  • Robinson MR, Sander van Doorn G, Gustafsson L, Qvarnström A (2012) Environment-dependent selection on mate choice in a natural population of birds. Ecol Lett 15:611–618

    Article  PubMed  Google Scholar 

  • Robinson MR, Santure AW, DeCauwer I, Sheldon BC, Slate J (2013) Partitioning of genetic variation across the genome using multimarker methods in a wild bird population. Mol Ecol 22:3963–3980

    Article  PubMed  Google Scholar 

  • Rockman MV (2011) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • RönnegĂ¥rd L, McFarlane ES, Husby A, Kawakami T, Ellegren H, Qvarnström A (2016) Increasing the power of genome wide association studies in natural populations using repeated measures—evaluation and implementation. Methods Ecol Evol 7(7):792–799

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond Ser B Biol Sci 263:1415–1421

    Article  Google Scholar 

  • Safran RJ, Scordato ESC, Wilkins MR, Hubbard JK, Jenkins BR, Albrecht T, Flaxman SM, Karaardıç H, Vortman Y, Lotem A, Nosil P, Pap P, Shen S, Chan SF, Parchman TL, Kane NC (2016) Genome-wide differentiation in closely related populations: the roles of selection and geographic isolation. Mol Ecol 25:3865–3883

    Article  CAS  PubMed  Google Scholar 

  • Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14(2):363–379

    Article  CAS  PubMed  Google Scholar 

  • Santure AW, Cauwer I, Robinson MR, Poissant J, Sheldon BC, Slate J (2013) Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population. Mol Ecol 22:3949–3962

    Article  PubMed  Google Scholar 

  • Santure AW, Poissant J, De Cauwer I, van Oers K, Robinson MR, Quinn JL, Groenen MAM, Visser ME, Sheldon BC, Slate J (2015) Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Mol Ecol 24(24):6148–6162

    Article  PubMed  PubMed Central  Google Scholar 

  • Schielzeth H, Husby A (2014) Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Ann N Y Acad Sci 1320:35–57

    Article  PubMed  Google Scholar 

  • Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H (2011a) QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Mol Ecol 21:329–339

    Article  PubMed  CAS  Google Scholar 

  • Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2011b) QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution 66:18–30

    Article  PubMed  Google Scholar 

  • Sheldon BC, Kruuk LE, Merila J (2003) Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57:406–420

    Article  CAS  PubMed  Google Scholar 

  • Silva CNS, McFarlane SE, Hagen IJ, RönnegĂ¥rd L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A (2017) Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity 119(3):197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slate J (2013) From Beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67:1251–1262

    PubMed  Google Scholar 

  • Slate J, Santure AW, Feulner PGD, Brown EA, Ball AD, Johnston SE, Gratten J (2010) Genome mapping in intensively studied wild vertebrate populations. Trends Genet 26:275–284. https://doi.org/10.1016/j.tig.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Speed D, Balding DJ (2015) Relatedness in the post-genomic era: is it still useful? Nat Rev Genet 16:33–44

    Article  CAS  PubMed  Google Scholar 

  • Stapley J, Birkhead TR, Burke T, Slate J (2008) A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution. Genetics 179:651–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101

    Article  Google Scholar 

  • Szulkin M, Gagnaire PA, Bierne N, Charmantier A (2016) Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits. Mol Ecol 25:542–558

    Article  CAS  PubMed  Google Scholar 

  • Tarka M, Ă…kesson M, BERALDI D, HernĂ¡ndez-SĂ¡nchez J, Hasselquist D, Bensch S, Hansson B (2010) A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc R Soc B Biol Sci 277:2361–2369

    Article  Google Scholar 

  • Toews DP, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, Lovette IJ (2016) Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr Biol 26:2313–2318

    Article  CAS  PubMed  Google Scholar 

  • Tuttle EM, Bergland AO, Korody ML, Brewer MS, Newhouse DJ, Minx P, Stager M, Betuel A, Cheviron ZA, Warren WC, Gonser RA, Balakrishnan CN (2016) Divergence and functional degradation of a sex chromosome-like supergene. Curr Biol 26(3):344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uebbing S, KĂ¼nstner A, Mäkinen H, Ellegren H (2013) Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol Evol 5:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bers NEM, Santure AW, van Oers K, De Cauwer I, Dibbits BW, Mateman C, Crooijmans R, Sheldon BC, Visser ME, Groenen MAM, Slate J (2012) The design and cross-population application of a genome-wide SNP chip for the great tit Parus major. Mol Ecol Resour 12:753–770

    Article  PubMed  CAS  Google Scholar 

  • Verhulst EC, Mateman AC, Zwier MV, Caro SP, Verhoeven KJ, van Oers K (2016) Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Mol Ecol 25:1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Vignal A, Eroy L (2019) Avian Genomics in Animal Breeding and the end of the model organism. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Publ Group 9:255–266

    CAS  Google Scholar 

  • Warren WC et al (2010) The genome of a songbird. Nature 464:757–762. https://doi.org/10.1038/nature08819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinman LR, Solomon JW, Rubenstein DR (2015) A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Mol Ecol Resour 15:502–511

    Article  CAS  PubMed  Google Scholar 

  • Wenzel MA, James MC, Douglas A, Piertney SB (2015) Genome-wide association and genome partitioning reveal novel genomic regions underlying variation in gastrointestinal nematode burden in a wild bird. Mol Ecol 24(16):4175–4192

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M, Feenstra B, Feingold E, Hayes MG, Hill WG, Landi MT, Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias RA, Melbye M, Pugh E, Cornelis MC, Weir BS, Goddard ME, Visscher PM (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahavi A (1975) Mate selection-a selection for a handicap. J Theor Biol 53:205–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang G (2014) Comparative genomics reveals insight into avian genome evolution and adaptation. Science 346:1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G (2015) Genomics: bird sequencing project takes off. Nature 522:34. https://doi.org/10.1038/522034d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Robert Kraus for the invitation to contribute to this book and for his encouragement during the process. We would also like to thank Robert Kraus and three anonymous reviewers for helpful comments and suggestions that improved the manuscript. A.H. acknowledges support from the Norwegian Research Council grants 239974 and 223257; A.Q. acknowledges the Swedish Research Council and the Knut and Alice Wallenberg Foundation; and SEM acknowledges support from the Swedish Research Council (2017-00499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arild Husby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husby, A., McFarlane, S.E., Qvarnström, A. (2019). Avian Population Studies in the Genomic Era. In: Kraus, R. (eds) Avian Genomics in Ecology and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-16477-5_9

Download citation

Publish with us

Policies and ethics