Advertisement

Avian Population Studies in the Genomic Era

Chapter

Abstract

Long-term studies on birds have played a pivotal role in addressing important questions in evolutionary biology, and avian biologists were quick at adopting new genetic tools. The integration of genetic work on birds has revolutionised the way we think about avian mating systems, for example. During the last decade, we have seen a tremendous decline in the cost of sequencing, making it possible to genotype or sequence hundreds or even thousands of individuals. These tools are offering an exciting new array of questions to be asked from long-term longitudinal studies on birds. We review here some of the genetic resources currently available to researchers studying avian population samples, some statistical approaches to analyse population-level genomic data and future questions that long-term studies on birds can provide insights into. It is clear that genomic approaches on long-term studies on birds have played, and will continue to play, an important role for addressing fundamental evolutionary questions.

Keywords

Quantitative genetics Microevolution GWAS Epigenetics Heritability Longitudinal studies Polygenic Chromosome partitioning DNA methylation SNP 

Notes

Acknowledgments

We are grateful to Robert Kraus for the invitation to contribute to this book and for his encouragement during the process. We would also like to thank Robert Kraus and three anonymous reviewers for helpful comments and suggestions that improved the manuscript. A.H. acknowledges support from the Norwegian Research Council grants 239974 and 223257; A.Q. acknowledges the Swedish Research Council and the Knut and Alice Wallenberg Foundation; and SEM acknowledges support from the Swedish Research Council (2017-00499).

References

  1. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296PubMedCrossRefPubMedCentralGoogle Scholar
  3. Backstrom N, Brandstrom M, Gustafsson L, Qvarnstrom A, Cheng H, Ellegren H (2006) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174(1):377–386PubMedPubMedCentralCrossRefGoogle Scholar
  4. Backstrom N, Karaiskou N, Leder EH, Gustafsson L, Primmer CR, Qvarnstrom A, Ellegren H (2008a) A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics 179(3):1479–1495PubMedPubMedCentralCrossRefGoogle Scholar
  5. Backstrom N, Fagerberg S, Ellegren H (2008b) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17(4):964–980PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barrett RD, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12:767–780PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barrett RD, Rogers SM, Schluter D (2008) Natural selection on a major armor gene in threespine stickleback. Science 322:255–257PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bateson ZW, Hammerly SC, Johnson JA, Morrow ME, Whittingham LA, Dunn PO (2016) Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater’s prairie-chicken. Mol Ecol 25:4730–4744PubMedCrossRefPubMedCentralGoogle Scholar
  9. Beavis W, Smith O, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896CrossRefGoogle Scholar
  10. Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2014) Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 23:3434–3451PubMedPubMedCentralCrossRefGoogle Scholar
  11. Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLoS Genet 10:e1004412PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boag PT, Grant PR (1978) Heritability of external morphology in Darwin’s finches. Nature 274:793–794.  https://doi.org/10.1038/274793a0 CrossRefGoogle Scholar
  14. Burke T, Bruford MW (1987) DNA fingerprinting in birds. Nature 327:149–152PubMedCrossRefPubMedCentralGoogle Scholar
  15. Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, Suh A, Dutoit L, Bureš S, Garamszegi LZ (2015) Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res 25:1656–1665PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dalloul RA et al (2010) Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8.  https://doi.org/10.1371/journal.pbio.1000475 PubMedPubMedCentralCrossRefGoogle Scholar
  17. de Los Campos G, Sorensen D, Gianola D (2015) Genomic heritability: what is it? PLoS Genet 11:e1005048PubMedCrossRefPubMedCentralGoogle Scholar
  18. Delmore KE, Toews DP, Germain RR, Owens GL, Irwin DE (2016) The genetics of seasonal migration and plumage color. Curr Biol 26:2167–2173PubMedCrossRefPubMedCentralGoogle Scholar
  19. Derks MF, Schachtschneider KM, Madsen O, Schijlen E, Verhoeven KJ, van Oers K (2016) Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17:332PubMedPubMedCentralCrossRefGoogle Scholar
  20. Elgvin TO, Trier CN, Torresen OK, Hagen IJ, Lien S, Nederbragt AJ, Ravinet M, Jensen H, Saetre GP (2017) The genomic mosaicism of hybrid speciation. Sci Adv 3:e1602996PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ellegren H (2013) The evolutionary genomics of birds. Annu Rev Ecol Evol Syst 44:239–259CrossRefGoogle Scholar
  22. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  24. Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, Künstner A, Mäkinen H, Nadachowska-Brzyska K, Qvarnström A (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–760CrossRefGoogle Scholar
  25. Evans SR, Gustafsson L (2017) Climate change upends selection on ornamentation in a wild bird. Nat Ecol Evol 1:0039CrossRefGoogle Scholar
  26. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group, EssexGoogle Scholar
  27. Farrell LL, Burke T, Slate J, McRae SB, Lank DB (2013) Genetic mapping of the female mimic morph locus in the ruff. BMC Genet 14:109PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  29. Garant D, Kruuk LE, McCleery RH, Sheldon BC (2004) Evolution in a changing environment: a case study with great tit fledging mass. Am Nat 164:E115–E129PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gering E, Johnsson M, Willis P, Getty T, Wright D (2015) Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Mol Ecol 24:2112–2124PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL, Csillery K (2017) Genomic quantitative genetics to study evolution in the wild. Trends Ecol Evol 32:897–908PubMedCrossRefPubMedCentralGoogle Scholar
  33. Grant PR, Grant BR (1995) Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:241–251PubMedCrossRefPubMedCentralGoogle Scholar
  34. Griffith SC, Owens IP, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hagen IJ, Billing AM, Ronning B, Pedersen SA, Parn H, Slate J, Jensen H (2013) The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus). Mol Ecol Resour 13:429–439PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hansson B, Sigeman H, Stervander M, Tarka M, Ponnikas S, Strandh M, Westerdahl H, Hasselquist D (2018) Contrasting results from GWAS and QTL mapping on wing length in great reed warblers. Mol Ecol Resour 18(4):867–876PubMedCrossRefPubMedCentralGoogle Scholar
  37. Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310Google Scholar
  38. Hillier LW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–777CrossRefGoogle Scholar
  39. Hoekstra H (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:222–234PubMedCrossRefPubMedCentralGoogle Scholar
  40. Huang Y et al (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45:776–783.  https://doi.org/10.1038/ng.2657 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Husby A, Visser ME, Kruuk LEB (2011) Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol 9:e1000585PubMedPubMedCentralCrossRefGoogle Scholar
  42. Husby A, Kawakami T, Ronnegard L, Smeds L, Ellegren H, Qvarnstrom A (2015) Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc R Soc B Biol Sci 282:20150156–20150156CrossRefGoogle Scholar
  43. Jensen H, Saether BE, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2003) Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J Evol Biol 16:1296–1307PubMedCrossRefPubMedCentralGoogle Scholar
  44. Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J (2013) Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature:1–4Google Scholar
  45. Kardos M, Husby A, McFarlane SE, Qvarnstrom A, Ellegren H (2016) Whole genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour 16:727–741PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kawakami T, Backstrom N, Burri R, Husby A, Olason P, Rice AM, Alund M, Qvarnstrom A, Ellegren H (2014) Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array. Mol Ecol Resour 14:1248–1260PubMedPubMedCentralCrossRefGoogle Scholar
  47. Keller LF, Grant PR, Grant BR, Petren K (2001) Heritability of morphological traits in Darwin’s finches: misidentied paternity and maternal effects. Heredity 87:325–336PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kemppainen P, Husby A (2018a) Inference of genetic architecture from chromosome partitioning analyses is sensitive to genome variation, sample size, heritability and effect size distribution. Mol Ecol Resour 18(4):767–777PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kemppainen P, Husby A (2018b) Accounting for heteroscedasticity and censoring in chromosome partitioning analyses. Evol Lett 2(6):599–609PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261PubMedCrossRefPubMedCentralGoogle Scholar
  51. Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2012) QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Mol Ecol 21:3704–3717PubMedCrossRefPubMedCentralGoogle Scholar
  52. Knief U, Schielzeth H, Backstrom N, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W (2017) Association mapping of morphological traits in wild and captive zebra finches: reliable within but not between populations. Mol Ecol 26(5):1285–1305PubMedCrossRefPubMedCentralGoogle Scholar
  53. Korsten P, Mueller JC, Hermannstadter C, Bouwman KM, Dingemanse NJ, Drent PJ, Liedvogel M, Matthysen E, van Oers K, van Overveld T, Patrick SC, Quinn JL, Sheldon BC, Tinbergen JM, Kempenaers B (2010) Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Mol Ecol 19:832–843PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kraus RHS, Wink M (2015) Avian genomics—fledging into the wild! J Ornithol 156:851–865.  https://doi.org/10.1007/s10336-015-1253-y CrossRefGoogle Scholar
  55. Kraus RHS et al (2011) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics 12:150PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kraus RHS, Van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC, HHT P (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55.  https://doi.org/10.1111/mec.12098 CrossRefPubMedGoogle Scholar
  57. Kraus RHS et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15:295–305.  https://doi.org/10.1111/1755-0998.12307 CrossRefPubMedGoogle Scholar
  58. Küpper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, Morgan TC, Karlionova N, Pinchuk P, Verkuil YI (2016) A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet 48:79PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lack D (1968) Ecological adaptations for breeding in birds. Methuen, LondonGoogle Scholar
  60. Laine VN, Gossmann TI, Schachtschneider KM, Garroway CJ, Madsen O, Verhoeven KJ, De Jager V, Megens H-J, Warren WC, Minx P (2016) Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat Commun 7:10474PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerova M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, Kerje S, Gustafson U, Shi C, Zhang H (2016a) Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet 48:84PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lamichhaney S, Han F, Berglund J, Wang C, Almén MS, Webster MT, Grant BR, Grant PR, Andersson L (2016b) A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352:470–474PubMedCrossRefPubMedCentralGoogle Scholar
  64. Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, Labadie P, Geneste E, Couture P, Baudrimont M, Bernatchez L (2016) RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Mol Ecol 25:219–237PubMedCrossRefPubMedCentralGoogle Scholar
  65. Liebl AL, Schrey AW, Richards CL, Martin LB (2013) Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol 53:351–358PubMedCrossRefPubMedCentralGoogle Scholar
  66. Losos JB, Arnold SJ, Bejerano G, Brodie ED, Hibbett D, Hoekstra HE, Mindell DP, Monteiro A, Moritz C, Orr HA, Petrov DA, Renner SS, Ricklefs RE, Soltis PS, Turner TL (2013) Evolutionary biology for the 21st century. PLoS Biol 11:e1001466PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lundregan SL, Hagen IJ, Gohli J, Niskanen AK, Kemppainen P, Ringsby TH, Kvalnes T, Parn H, Ronning B, Holand H, Ranke PS, Batnes AS, Selvik LK, Lien S, Saether BE, Husby A, Jensen H (2018) Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis. Mol Ecol 27:3498–3514PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MAGoogle Scholar
  69. MacColl ADC, Hatchwell BJ (2003) Heritability of parental effort in a passerine bird. Evolution 57:2191–2195PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mackay T (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577PubMedCrossRefPubMedCentralGoogle Scholar
  72. Malenfant RM, Coltman DW, Davis CS (2014) Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour 15(3):587–600PubMedCrossRefPubMedCentralGoogle Scholar
  73. Merilä J, Sheldon BC (2001) Avian quantitative genetics. In: Nolan V Jr, Thompson C (eds) Current Ornithology. Kluwer Academic, New York, pp 179–255Google Scholar
  74. Mueller JC, Korsten P, Hermannstaedter C, Feulner T, Dingemanse NJ, Matthysen E, van Oers K, van Overveld T, Patrick SC, Quinn JL, Riemenschneider M, Tinbergen JM, Kempenaers B (2013) Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4gene region in four great tit (Parus major) populations. Mol Ecol 22:2797–2809PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mueller JC, Kuhl H, Timmermann B, Kempenaers B (2016) Characterization of the genome and transcriptome of the blue tit Cyanistes caeruleus: polymorphisms, sex-biased expression and selection signals. Mol Ecol Resour 16:549–561PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mundy NI, Stapley J, Bennison C, Tucker R, Twyman H, Kim KW, Burke T, Birkhead TR, Andersson S, Slate J (2016) Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Curr Biol 26:1435–1440PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H (2013) Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 9:e1003942PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nadeau NJ, Jiggins CD (2010) A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet 26:484–492PubMedCrossRefPubMedCentralGoogle Scholar
  79. Nadeau N, Mundy N, Gourichon D, Minvielle F (2007) Association of a single-nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica). Anim Genet 38:609–613PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nichols JT (1908) Lawrence’s and Brewster’s Warblers and Mendelian inheritance. Auk 25:86–86CrossRefGoogle Scholar
  81. Ottenburghs J, Ydenberg RC, van Hooft P, Van Wieren SE, Prins HHT (2015) The Avian Hybrids Project: gathering the scientific literature on avian hybridization. Ibis 157(4):892–894CrossRefGoogle Scholar
  82. Ottenburghs J, Kraus RHS, van Hooft P, van Wieren SE, Ydenberg RC, Prins HHT (2017) Avian introgression in the genomic era. Avian Res 8:30CrossRefGoogle Scholar
  83. Poelstra JW, Ellegren H, Wolf J (2013) An extensive candidate gene approach to speciation: diversity, divergence and linkage disequilibrium in candidate pigmentation genes across the European crow hybrid zone. Heredity 111(6):467–473PubMedPubMedCentralCrossRefGoogle Scholar
  84. Postma E, Charmantier A (2007) What ‘animal models’ can and cannot tell ornithologists about the genetics of wild populations. J Ornithol 148:S633–S642CrossRefGoogle Scholar
  85. Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, Tian S, Zhang J, Zhang R, Meng X, Zhang Y, Zhang Y, Zhu X, Wang W, Lambert D, Ericson PG, Subramanian S, Yeung C, Zhu H, Jiang Z, Li R, Lei F (2013) Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun 4:2071PubMedCrossRefPubMedCentralGoogle Scholar
  86. Qvarnström A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature 441:84–86PubMedCrossRefPubMedCentralGoogle Scholar
  87. Qvarnström A, Rice AM, Ellegren H (2010) Speciation in Ficedula flycatchers. Philos Trans R Soc B Biol Sci 365:1841–1852CrossRefGoogle Scholar
  88. Robinson MR, Sander van Doorn G, Gustafsson L, Qvarnström A (2012) Environment-dependent selection on mate choice in a natural population of birds. Ecol Lett 15:611–618PubMedCrossRefPubMedCentralGoogle Scholar
  89. Robinson MR, Santure AW, DeCauwer I, Sheldon BC, Slate J (2013) Partitioning of genetic variation across the genome using multimarker methods in a wild bird population. Mol Ecol 22:3963–3980PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rockman MV (2011) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66:1–17PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rönnegård L, McFarlane ES, Husby A, Kawakami T, Ellegren H, Qvarnström A (2016) Increasing the power of genome wide association studies in natural populations using repeated measures—evaluation and implementation. Methods Ecol Evol 7(7):792–799PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond Ser B Biol Sci 263:1415–1421CrossRefGoogle Scholar
  93. Safran RJ, Scordato ESC, Wilkins MR, Hubbard JK, Jenkins BR, Albrecht T, Flaxman SM, Karaardıç H, Vortman Y, Lotem A, Nosil P, Pap P, Shen S, Chan SF, Parchman TL, Kane NC (2016) Genome-wide differentiation in closely related populations: the roles of selection and geographic isolation. Mol Ecol 25:3865–3883PubMedCrossRefPubMedCentralGoogle Scholar
  94. Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14(2):363–379PubMedCrossRefPubMedCentralGoogle Scholar
  95. Santure AW, Cauwer I, Robinson MR, Poissant J, Sheldon BC, Slate J (2013) Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population. Mol Ecol 22:3949–3962PubMedCrossRefPubMedCentralGoogle Scholar
  96. Santure AW, Poissant J, De Cauwer I, van Oers K, Robinson MR, Quinn JL, Groenen MAM, Visser ME, Sheldon BC, Slate J (2015) Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Mol Ecol 24(24):6148–6162PubMedPubMedCentralCrossRefGoogle Scholar
  97. Schielzeth H, Husby A (2014) Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Ann N Y Acad Sci 1320:35–57PubMedCrossRefPubMedCentralGoogle Scholar
  98. Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H (2011a) QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Mol Ecol 21:329–339PubMedCrossRefPubMedCentralGoogle Scholar
  99. Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2011b) QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution 66:18–30PubMedCrossRefPubMedCentralGoogle Scholar
  100. Sheldon BC, Kruuk LE, Merila J (2003) Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57:406–420PubMedCrossRefPubMedCentralGoogle Scholar
  101. Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A (2017) Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity 119(3):197–205PubMedPubMedCentralCrossRefGoogle Scholar
  102. Slate J (2013) From Beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67:1251–1262PubMedPubMedCentralGoogle Scholar
  103. Slate J, Santure AW, Feulner PGD, Brown EA, Ball AD, Johnston SE, Gratten J (2010) Genome mapping in intensively studied wild vertebrate populations. Trends Genet 26:275–284.  https://doi.org/10.1016/j.tig.2010.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Speed D, Balding DJ (2015) Relatedness in the post-genomic era: is it still useful? Nat Rev Genet 16:33–44PubMedCrossRefPubMedCentralGoogle Scholar
  105. Stapley J, Birkhead TR, Burke T, Slate J (2008) A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution. Genetics 179:651–667PubMedPubMedCentralCrossRefGoogle Scholar
  106. Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101CrossRefGoogle Scholar
  107. Szulkin M, Gagnaire PA, Bierne N, Charmantier A (2016) Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits. Mol Ecol 25:542–558PubMedCrossRefPubMedCentralGoogle Scholar
  108. Tarka M, Åkesson M, BERALDI D, Hernández-Sánchez J, Hasselquist D, Bensch S, Hansson B (2010) A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc R Soc B Biol Sci 277:2361–2369CrossRefGoogle Scholar
  109. Toews DP, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, Lovette IJ (2016) Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr Biol 26:2313–2318PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tuttle EM, Bergland AO, Korody ML, Brewer MS, Newhouse DJ, Minx P, Stager M, Betuel A, Cheviron ZA, Warren WC, Gonser RA, Balakrishnan CN (2016) Divergence and functional degradation of a sex chromosome-like supergene. Curr Biol 26(3):344–350PubMedPubMedCentralCrossRefGoogle Scholar
  111. Uebbing S, Künstner A, Mäkinen H, Ellegren H (2013) Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol Evol 5:1555–1566PubMedPubMedCentralCrossRefGoogle Scholar
  112. van Bers NEM, Santure AW, van Oers K, De Cauwer I, Dibbits BW, Mateman C, Crooijmans R, Sheldon BC, Visser ME, Groenen MAM, Slate J (2012) The design and cross-population application of a genome-wide SNP chip for the great tit Parus major. Mol Ecol Resour 12:753–770PubMedCrossRefPubMedCentralGoogle Scholar
  113. Verhulst EC, Mateman AC, Zwier MV, Caro SP, Verhoeven KJ, van Oers K (2016) Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Mol Ecol 25:1801–1811PubMedCrossRefPubMedCentralGoogle Scholar
  114. Vignal A, Eroy L (2019) Avian Genomics in Animal Breeding and the end of the model organism. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  115. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Publ Group 9:255–266Google Scholar
  116. Warren WC et al (2010) The genome of a songbird. Nature 464:757–762.  https://doi.org/10.1038/nature08819 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Weinman LR, Solomon JW, Rubenstein DR (2015) A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Mol Ecol Resour 15:502–511PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wenzel MA, James MC, Douglas A, Piertney SB (2015) Genome-wide association and genome partitioning reveal novel genomic regions underlying variation in gastrointestinal nematode burden in a wild bird. Mol Ecol 24(16):4175–4192PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M, Feenstra B, Feingold E, Hayes MG, Hill WG, Landi MT, Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias RA, Melbye M, Pugh E, Cornelis MC, Weir BS, Goddard ME, Visscher PM (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43:519–525PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zahavi A (1975) Mate selection-a selection for a handicap. J Theor Biol 53:205–214PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zhang G (2014) Comparative genomics reveals insight into avian genome evolution and adaptation. Science 346:1311–1320PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang G (2015) Genomics: bird sequencing project takes off. Nature 522:34.  https://doi.org/10.1038/522034d CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
  2. 2.Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
  3. 3.Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
  4. 4.Institute of Evolutionary Biology, University of EdinburghEdinburghUK

Personalised recommendations