Advertisement

A Historical Perspective of Avian Genomics

Chapter

Abstract

A traditional aim of avian taxonomists and systematists was to establish a reliable phylogenetic framework, the avian tree of life. Until 50 years ago, the only way to establish systematic relationships relied on the comparison of morphological characters, which could be misleading because of convergent character evolution. The first molecular approach used the electrophoretic separation of proteins (from eggs). This was followed in the 1980s by DNA-DNA hybridisation. Both methods provided some insight but did not show sufficient resolution. Better results were obtained from nucleotide sequencing of marker genes, which started in the 1990s. A real breakthrough came with next-generation sequencing (NGS), which allowed sequencing a large portion of the avian genome. The review illustrates and briefly discusses the achievements in the past and limitations of the different methodological approaches.

Keywords

Systematics Taxonomy Classification Morphology Phylogenetics Genome DNA-DNA hybridisation Sequencing Next-generation sequencing 

References

  1. Avise JC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522CrossRefGoogle Scholar
  2. Barrowclough GF, Cracraft J, Klicka J, Zink RM (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307.  https://doi.org/10.1371/journal.pone.0166307 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Braun EL, Cracraft J, Houde P (2019) Resolving the avian tree of life from top to bottom: the promise and potential boundaries of the phylogenomic era. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  4. Cassin-Sackett L, Welch AJ, Venkatraman MX, Callicrate TE, Fleischer RC (2019) The contribution of genomics to bird conservation. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  5. Clements JB (2007) The Clements checklist of birds of the world. Cornell University Press, IthacaGoogle Scholar
  6. Dalloul RA, Turkey Genome Consortium et al (2010) Multi-platform next generation sequencing of the genome of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8:e1000475CrossRefGoogle Scholar
  7. Damas J, O’Connor RE, Griffin DK, Larkin DM (2019) Avian chromosomal evolution. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  8. Dickinson EC (2003) The Howard and Moore complete checklist of the birds of the world, 3rd edn. Aufl. Helm, LondonGoogle Scholar
  9. Doty P, Marmur J, Eigner J, Schildkraut C (1960) Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc Natl Acad Sci U S A 46:461–476CrossRefGoogle Scholar
  10. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  11. Gadow H (1892) On the classification of birds. Proc Zool Soc Lond 1892:229–256Google Scholar
  12. Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja A, Fiddes I, Hillier LW et al (2016) Long-read sequence assembly of the gorilla genome. Science 352:aae0344CrossRefGoogle Scholar
  13. Griffin DK, Larkin DM, O’Connor RE (2019) Jurassic spark: what did the genomes of dinosaurs look like? In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  14. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski Jl, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768CrossRefGoogle Scholar
  15. Hillier LW, International Chicken Genome Sequencing Consortium et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716CrossRefGoogle Scholar
  16. Huang et al. (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45:776–783.  https://doi.org/10.1038/ng.2657 CrossRefGoogle Scholar
  17. Husby A, McFarlane SE, Qvarnström A (2019) Avian long-term population studies in the genomic era. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  18. Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331CrossRefGoogle Scholar
  19. Jax E, Wink M, Kraus RHS (2018) Avian transcriptomics—opportunities and challenges. J Ornithol 159:599–629CrossRefGoogle Scholar
  20. Kraus RHS, Wink M (2015) Avian genomics—fledging into the wild! J Ornithol 156:851–865CrossRefGoogle Scholar
  21. Marmur J, Doty P (1961) Thermal denaturation of nucleic acids. J Mol Biol 3:1427–1429Google Scholar
  22. Mayr E, Amadon D (1951) A classification of recent birds. Am Mus Novit 1496Google Scholar
  23. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46CrossRefGoogle Scholar
  24. Ottenburghs J, Lavretsky P, Peters JL, (maybe Taki Kawakami), RHS K (2019) Population genomics and phylogeography. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  25. Ottenburghs J (2019) Avian species concepts in the light of genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  26. Peters JL et al (1931–1986) Checklist of the birds of the world, Harvard University Press/Museum of Comparative Zoology, Boston, MAGoogle Scholar
  27. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573CrossRefGoogle Scholar
  28. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491CrossRefGoogle Scholar
  29. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354CrossRefGoogle Scholar
  30. Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214:1205–1210CrossRefGoogle Scholar
  31. Schulze-Hagen K, Steinheimer F, Kinzelbach R, Gasser C (2003) Avian taxidermy in Europe from the middle ages to the renaissance. J Ornithol 144:459–478CrossRefGoogle Scholar
  32. Shields GF, Helm-Bychowski KM (1988) Mitochondrial DNA of birds. In: Johnston RF (ed) Current ornithology, vol 5. Plenum Press, New York, pp 273–295CrossRefGoogle Scholar
  33. Sibley C (1960) The electrophoretic patterns of egg-white proteins as taxonomic characters. Ibis 102:215–284CrossRefGoogle Scholar
  34. Sibley CG, Corbin KW, Ahlquist JE, Ferguson A (1974) Birds. In: Wright CA (ed) Biochemical and immunological taxonomy of animals. Academic, New York, pp 89–176Google Scholar
  35. Sibley C, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven, CTGoogle Scholar
  36. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. Yale University Press, New Haven, CTGoogle Scholar
  37. Stresemann E (1927–1934) Sauropsida: Aves. In: Kukenthal W, Krumbach T (eds) Handbuch der Zoologie. Walter de Gruyter & Coal, BerlinGoogle Scholar
  38. Stresemann E (1951) Die Entwicklung der Ornithologie. Von Aristoteles bis zur Gegenwart. Reprinted by Aula Verlag 1996Google Scholar
  39. Thorpe JP (1982) The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. Annu Rev Ecol Syst 13:139–168CrossRefGoogle Scholar
  40. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426CrossRefGoogle Scholar
  41. Vignal A, Eöry L (2019) Avian genomics in animal breeding and the end of the model organism. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  42. Walters M (2003) A concise history of ornithology. Helm, LondonGoogle Scholar
  43. Warren WC, Zebrafinch Genome Consortium et al (2010) The genome of a songbird. Nature 464:757–762CrossRefGoogle Scholar
  44. Weissensteiner M, Suh A (2019) Repetitive DNA—the dark matter of avian genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  45. Wetmore A (1960) A classification for the birds of the world. Smithson Misc Coll 139:1–37Google Scholar
  46. Wink M (2011) Evolution und Phylogenie der Vögel-Taxonomische Konsequenzen. Vogelwarte 49:17–24Google Scholar
  47. Wink M (2014) Ornithologie für Einsteiger. Springer-Spektrum, HeidelbergGoogle Scholar
  48. Wink M (2015) Der erste phylogenomische Stammbaum der Vögel. Vogelwarte 53:45–50Google Scholar
  49. Wolters HE (1982) Die Vogelarten der Erde: eine systematische Liste mit Verbreitungsangaben sowie deutschen und englischen Namen. Parey, HamburgGoogle Scholar
  50. Zhang G et al (2014) Comparative genomics reveals insight into avian genome evolution. Science 346:1311–1320CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heidelberg University, Institute of Pharmacy and Molecular BiotechnologyHeidelbergGermany

Personalised recommendations