Skip to main content

A Historical Perspective of Avian Genomics

  • Chapter
  • First Online:
Book cover Avian Genomics in Ecology and Evolution

Abstract

A traditional aim of avian taxonomists and systematists was to establish a reliable phylogenetic framework, the avian tree of life. Until 50 years ago, the only way to establish systematic relationships relied on the comparison of morphological characters, which could be misleading because of convergent character evolution. The first molecular approach used the electrophoretic separation of proteins (from eggs). This was followed in the 1980s by DNA-DNA hybridisation. Both methods provided some insight but did not show sufficient resolution. Better results were obtained from nucleotide sequencing of marker genes, which started in the 1990s. A real breakthrough came with next-generation sequencing (NGS), which allowed sequencing a large portion of the avian genome. The review illustrates and briefly discusses the achievements in the past and limitations of the different methodological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise JC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Article  Google Scholar 

  • Barrowclough GF, Cracraft J, Klicka J, Zink RM (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307. https://doi.org/10.1371/journal.pone.0166307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun EL, Cracraft J, Houde P (2019) Resolving the avian tree of life from top to bottom: the promise and potential boundaries of the phylogenomic era. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Cassin-Sackett L, Welch AJ, Venkatraman MX, Callicrate TE, Fleischer RC (2019) The contribution of genomics to bird conservation. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Clements JB (2007) The Clements checklist of birds of the world. Cornell University Press, Ithaca

    Google Scholar 

  • Dalloul RA, Turkey Genome Consortium et al (2010) Multi-platform next generation sequencing of the genome of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8:e1000475

    Article  Google Scholar 

  • Damas J, O’Connor RE, Griffin DK, Larkin DM (2019) Avian chromosomal evolution. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Dickinson EC (2003) The Howard and Moore complete checklist of the birds of the world, 3rd edn. Aufl. Helm, London

    Google Scholar 

  • Doty P, Marmur J, Eigner J, Schildkraut C (1960) Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc Natl Acad Sci U S A 46:461–476

    Article  CAS  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Gadow H (1892) On the classification of birds. Proc Zool Soc Lond 1892:229–256

    Google Scholar 

  • Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja A, Fiddes I, Hillier LW et al (2016) Long-read sequence assembly of the gorilla genome. Science 352:aae0344

    Article  Google Scholar 

  • Griffin DK, Larkin DM, O’Connor RE (2019) Jurassic spark: what did the genomes of dinosaurs look like? In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski Jl, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  Google Scholar 

  • Hillier LW, International Chicken Genome Sequencing Consortium et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  Google Scholar 

  • Huang et al. (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45:776–783. https://doi.org/10.1038/ng.2657

    Article  Google Scholar 

  • Husby A, McFarlane SE, Qvarnström A (2019) Avian long-term population studies in the genomic era. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  Google Scholar 

  • Jax E, Wink M, Kraus RHS (2018) Avian transcriptomics—opportunities and challenges. J Ornithol 159:599–629

    Article  Google Scholar 

  • Kraus RHS, Wink M (2015) Avian genomics—fledging into the wild! J Ornithol 156:851–865

    Article  Google Scholar 

  • Marmur J, Doty P (1961) Thermal denaturation of nucleic acids. J Mol Biol 3:1427–1429

    Google Scholar 

  • Mayr E, Amadon D (1951) A classification of recent birds. Am Mus Novit 1496

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  • Ottenburghs J, Lavretsky P, Peters JL, (maybe Taki Kawakami), RHS K (2019) Population genomics and phylogeography. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Ottenburghs J (2019) Avian species concepts in the light of genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Peters JL et al (1931–1986) Checklist of the birds of the world, Harvard University Press/Museum of Comparative Zoology, Boston, MA

    Google Scholar 

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573

    Article  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354

    Article  CAS  Google Scholar 

  • Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214:1205–1210

    Article  CAS  Google Scholar 

  • Schulze-Hagen K, Steinheimer F, Kinzelbach R, Gasser C (2003) Avian taxidermy in Europe from the middle ages to the renaissance. J Ornithol 144:459–478

    Article  Google Scholar 

  • Shields GF, Helm-Bychowski KM (1988) Mitochondrial DNA of birds. In: Johnston RF (ed) Current ornithology, vol 5. Plenum Press, New York, pp 273–295

    Chapter  Google Scholar 

  • Sibley C (1960) The electrophoretic patterns of egg-white proteins as taxonomic characters. Ibis 102:215–284

    Article  Google Scholar 

  • Sibley CG, Corbin KW, Ahlquist JE, Ferguson A (1974) Birds. In: Wright CA (ed) Biochemical and immunological taxonomy of animals. Academic, New York, pp 89–176

    Google Scholar 

  • Sibley C, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven, CT

    Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. Yale University Press, New Haven, CT

    Google Scholar 

  • Stresemann E (1927–1934) Sauropsida: Aves. In: Kukenthal W, Krumbach T (eds) Handbuch der Zoologie. Walter de Gruyter & Coal, Berlin

    Google Scholar 

  • Stresemann E (1951) Die Entwicklung der Ornithologie. Von Aristoteles bis zur Gegenwart. Reprinted by Aula Verlag 1996

    Google Scholar 

  • Thorpe JP (1982) The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. Annu Rev Ecol Syst 13:139–168

    Article  CAS  Google Scholar 

  • van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    Article  Google Scholar 

  • Vignal A, Eöry L (2019) Avian genomics in animal breeding and the end of the model organism. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Walters M (2003) A concise history of ornithology. Helm, London

    Google Scholar 

  • Warren WC, Zebrafinch Genome Consortium et al (2010) The genome of a songbird. Nature 464:757–762

    Article  CAS  Google Scholar 

  • Weissensteiner M, Suh A (2019) Repetitive DNA—the dark matter of avian genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, Cham

    Google Scholar 

  • Wetmore A (1960) A classification for the birds of the world. Smithson Misc Coll 139:1–37

    Google Scholar 

  • Wink M (2011) Evolution und Phylogenie der Vögel-Taxonomische Konsequenzen. Vogelwarte 49:17–24

    Google Scholar 

  • Wink M (2014) Ornithologie für Einsteiger. Springer-Spektrum, Heidelberg

    Google Scholar 

  • Wink M (2015) Der erste phylogenomische Stammbaum der Vögel. Vogelwarte 53:45–50

    Google Scholar 

  • Wolters HE (1982) Die Vogelarten der Erde: eine systematische Liste mit Verbreitungsangaben sowie deutschen und englischen Namen. Parey, Hamburg

    Google Scholar 

  • Zhang G et al (2014) Comparative genomics reveals insight into avian genome evolution. Science 346:1311–1320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wink, M. (2019). A Historical Perspective of Avian Genomics. In: Kraus, R. (eds) Avian Genomics in Ecology and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-16477-5_2

Download citation

Publish with us

Policies and ethics