Skip to main content

High-Throughput Analytics in the Function of Personalized Medicine

  • Chapter
  • First Online:
Personalized Medicine in Healthcare Systems

Part of the book series: Europeanization and Globalization ((EAG,volume 5))

  • 668 Accesses

Abstract

Rapid and highly reliable analysis of patient sample is the first premise and simultaneously the first step in the direction of right diagnosis and personalized treatment. However, this fact is frequently neglected. Despite this situation, almost unnoticed activities in this field started 55 years ago with the concept of a biosensor for fast monitoring of blood glucose and diabetes control, and blood glucose determination is still the driving force for optimization of these kinds of high-throughput analytical devices. The development of devices for high-throughput analytical methods for fast and accurate analysis started with the separation of molecules based on different size, charge and hydrophobicity and with the introduction of chromatographic and electrophoretic methods into clinical laboratories. The next step was their optimization towards the strategy for a fast analysis and miniaturization. One of the main tools for such kinds of analyses are different optimized supports and instruments for signal amplification that are used in such devices. The discovery and use of miniaturized chromatographic and electrophoretic systems based on monolithic supports was briefly discussed here. Their development in the direction of further miniaturization towards biosensors and nanobiosensors was also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ESF Forward Look (2012).

  2. 2.

    Bošnjak et al. (2008).

  3. 3.

    Pavelić et al. (2016).

  4. 4.

    The Royal Swedish Academy of Sciences (2002).

  5. 5.

    Josić and Andjelković (2016).

  6. 6.

    Nobel Lectures Chemistry (1964).

  7. 7.

    Axén and Porath (1966).

  8. 8.

    Johansson et al. (1975).

  9. 9.

    Unger (1979) and Chang et al. (1976).

  10. 10.

    Josić et al. (1989).

  11. 11.

    Tennikova et al. (1990).

  12. 12.

    Hjertén et al. (1989).

  13. 13.

    Josić et al. (1992).

  14. 14.

    Josić et al. (1992) and Svec and Huber (2006).

  15. 15.

    Svec and Huber (2006) and Josić and Buchacher (2001).

  16. 16.

    Štrancar et al. (1996).

  17. 17.

    Podgornik et al. (2000).

  18. 18.

    Wu et al. (2001) and Švec and Lv (2015).

  19. 19.

    Ručević et al. (2006) and Opal et al. (2007).

  20. 20.

    Josić and Buchacher (2001).

  21. 21.

    Opal et al. (2007) and Chaaban et al. (2015).

  22. 22.

    Breen et al. (2012).

  23. 23.

    Pučić et al. (2011).

  24. 24.

    Brgles et al. (2011).

  25. 25.

    Burke et al. (1988).

  26. 26.

    Veeraragavan et al. (1991) and Manseth et al. (2004).

  27. 27.

    Husband et al. (2000).

  28. 28.

    Veeraragavan et al. (1991).

  29. 29.

    Manseth et al. (2004).

  30. 30.

    Brgles et al. (2011) and Šrajer Gajdošik et al. (2012).

  31. 31.

    Ahrends et al. (2010), Kotasinska et al. (2012) and Trusch et al. (2012).

  32. 32.

    Shu et al. (2012).

  33. 33.

    Šrajer Gajdošik et al. (2014).

  34. 34.

    Burnouf (2007).

  35. 35.

    Burnouf (2007) and Josić et al. (2000).

  36. 36.

    Cho (2015).

  37. 37.

    Schiel et al. (2011).

  38. 38.

    Černigoj et al. (2015).

  39. 39.

    Brown et al. (2010).

  40. 40.

    Brgles et al. (2011).

  41. 41.

    Brgles et al. (2011), Šrajer Gajdošik et al. (2012), Ahrends et al. (2010), Kotasinska et al. (2012), Trusch et al. (2012) and Josić and Clifton (2007).

  42. 42.

    Josić et al. (1992) and Abou-Rebyeh et al. (1991).

  43. 43.

    Štrancar et al. (1996).

  44. 44.

    Svec and Fréchet (1996).

  45. 45.

    Brgles et al. (2011), Ahrends et al. (2010) and Šrajer Gajdošik et al. (2014).

  46. 46.

    Ahrends et al. (2010).

  47. 47.

    Josić and Clifton (2007).

  48. 48.

    Trbojević-Akmačić et al. (2016).

  49. 49.

    Naldi et al. (2017).

  50. 50.

    Breen et al. (2012), Pučić et al. (2011), Naldi et al. (2017) and Breen et al. (2016).

  51. 51.

    Peterson et al. (2002).

  52. 52.

    Makaram et al. (2014).

  53. 53.

    Nayak et al. (2017).

  54. 54.

    Wang (2008).

  55. 55.

    Nayak et al. (2017), Wang (2008) and Witkowska Nery et al. (2016).

  56. 56.

    Zang et al. (2004).

  57. 57.

    Chen et al. (2013).

  58. 58.

    Sheng et al. (2012).

  59. 59.

    Odom et al. (2013).

  60. 60.

    Lusczek et al. (2017).

  61. 61.

    Champagne et al. (2016).

  62. 62.

    Cavally et al. (2017).

  63. 63.

    Vander Heiden et al. (2009).

  64. 64.

    Nayak et al. (2017), Du and Dong (2017) and Liu et al. (2010).

  65. 65.

    Wang (2008) and Witkowska Nery et al. (2016).

  66. 66.

    Clark et al. (2016).

  67. 67.

    Alves et al. (2016).

  68. 68.

    Zamperi et al. (2017) and Švec and Lv (2015).

  69. 69.

    Fu et al. (2017), Du and Dong (2017) and Ashley et al. (2017).

  70. 70.

    Wen et al. (2017).

  71. 71.

    Yang et al. (2017).

  72. 72.

    Du and Dong (2017).

  73. 73.

    Ashley et al. (2017).

  74. 74.

    Ručević et al. (2006).

  75. 75.

    Švec and Lv (2015) and Malik et al. (2013).

  76. 76.

    Huang et al. (2016a).

  77. 77.

    Fu et al. (2017).

  78. 78.

    Nayak et al. (2017), Wang (2008) and Witkowska Nery et al. (2016).

  79. 79.

    Wang (2008).

  80. 80.

    Witkowska Nery et al. (2016).

  81. 81.

    Lupinek et al. (2014).

  82. 82.

    Lupinek et al. (2014).

  83. 83.

    Huang et al. (2016a).

  84. 84.

    Huang et al. (2016b).

  85. 85.

    Zhong et al. (2016).

  86. 86.

    Fu et al. (2017).

  87. 87.

    Du and Dong (2017).

  88. 88.

    Wen et al. (2017).

  89. 89.

    Jianrong et al. (2004).

  90. 90.

    MacKenzie et al. (2009) and Zeng et al. (2011).

  91. 91.

    Malik et al. (2013) and Jianrong et al. (2004).

  92. 92.

    MacKenzie et al. (2009) and Zeng et al. (2011).

  93. 93.

    Tiwari and Turner (2014).

References

  • Abou-Rebyeh H, Körber F, Schubert-Rehberg K, Reusch J, Josić D (1991) Carrier membrane as a stationary phase for affinity chromatography and kinetic studies of membrane bound enzymes. J Chromatogr B 566:341–350

    Article  Google Scholar 

  • Ahrends R, Lichtner B, Bertsch A, Kohlbacher O, Hildebrand D, Trusch M, Schlüter H (2010) Application of displacement chromatography for the proteome analysis of a human plasma protein fraction. J Chromatogr A 1217:3321–3329

    Article  Google Scholar 

  • Alves RC, Barroso MF, González-García MB, Oliveira MB, Delerue-Matos C (2016) New trends in food allergens detection: toward biosensing strategies. Crit Rev Food Sci Nutr 56:2304–2319

    Article  Google Scholar 

  • Ashley J, Piekarska M, Segers C, Trinth L, Rodgers T, Willey R, Tothill IE (2017) An SPR based sensor for allergens detection. Biosens Bioelectron 88:109–113

    Article  Google Scholar 

  • Axén R, Porath J (1966) Chemical coupling of enzymes to cross-linked dextran (“Sephadex”). Nature 210:367–369

    Article  Google Scholar 

  • Bošnjak H, Pavelić K, Kraljević Pavelić S (2008) Towards preventive medicine. High-throughput methods from molecular biology are about to change daily clinical practice. EMBO Rep 9:1056–1060

    Article  Google Scholar 

  • Breen L, Cao L, Eom L, Šrajer Gajdošik M, Camara L, Giacometti J, Dupuy D, Josić D (2012) High-throughput fractionation of human plasma for fast enrichment of low- and high-abundance proteins. Blood Trans 10(Suppl 2):S89–S100

    Google Scholar 

  • Breen L, Pučić-Baković M, Vučković F, Reiding K, Trbojević-Akmačić I, Šrajer Gajdošik M, Cook MI, Lopez M, Wuhrer M, Camara LM, Andjelković U, Dupuy DE, Josić D (2016) IgG and IgM glycosylation patterns in patients undergoing image-guided tumor ablation. Biochim Biophys Acta Gen Subj 1860:1786–1794

    Article  Google Scholar 

  • Brgles M, Clifton J, Walsh R, Huang F, Ručević M, Cao L, Hixson D, Müller E, Josić D (2011) Selectivity of monolithic supports under overloading conditions and their use for separation of human plasma and isolation of low abundance proteins. J Chromatogr A 1218:2389–2395

    Article  Google Scholar 

  • Brown A, Bill J, Tully T, Radhamohan A, Dowd C (2010) Overloading ion-exchange membranes as a purification step for monoclonal antibodies. Biotechnol Appl Biochem 56:59–70

    Article  Google Scholar 

  • Burke LTW, Mant CT, Hodges RS (1988) A novel approach to reversed-phase preparative high-performance liquid chromatography of peptides. J Liq Chromat 11:1229–1247

    Article  Google Scholar 

  • Burnouf T (2007) Modern plasma fractionation. Transfusion Med Rev 21:101–117

    Article  Google Scholar 

  • Cavally G, Justice JN, Boyle KE, D’Alessandro A, Eisenmesser EZ, Herrera JJ (2017) Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc Natl Acad Sci USA 114:2313–2318

    Article  Google Scholar 

  • Černigoj U, Martinuč U, Cardoso S, Sekirnik R, Lendero Kranjc N, Štrancar A (2015) Sample displacement chromatography of plasmid DNA forms. J Chromatogr A 1414:103–109

    Article  Google Scholar 

  • Chaaban H, Keshari RS, Silasi-Mansat R, Popescu NI, Mehta-D’Souza P, Lim Y-P, Lupu F (2015) Inter-α-inhibitor protein and its associated glycosaminolglycans protect against histone-induced injury. Blood 125:2286–2296

    Article  Google Scholar 

  • Champagne DP, Hatle KM, Fortner KA, D’Alessandro A, Thornton TM, Yang R, Torraba D, Tomás-Cortázar J, Jun YW, Ahn KH, Hansen KC, Haynes L, Anguita J, Rincon M (2016) Fine tuning of CD8 (+) T cell mitochondrial metabolism by the respiratory chain repressor MCJ dictates protection to influenza virus. Immunity 44:1299–1311

    Article  Google Scholar 

  • Chang S-H, Noel R, Regnier FE (1976) High speed ion exchange chromatography of proteins. Anal Chem 48:1839–1845

    Article  Google Scholar 

  • Chen P, Peng Y, He M, Yan X-C, Zhang Y, Liu X-N (2013) Sensitive electrochemical detection of creatinine at disposable screnn-printed carbon electrode mixed with ferrocenemethanol. Int J Electrochem Sci 8:8931–8939

    Google Scholar 

  • Cho W (2015) Displacement phenomena in lectin affinity chromatography. Anal Chem 87:9612–9620

    Article  Google Scholar 

  • Clark KD, Zhang C, Anderson JL (2016) Sample preparation for bioanalytical and pharmaceutical analysis. Anal Chem 88:11262–11270

    Article  Google Scholar 

  • Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89:189–215

    Article  Google Scholar 

  • ESF Forward Look (2012) Personalised medicine for the European citizen. Towards more precise medicine for the diagnosis, treatment and prevention of disease (iPM). European Science Foundation, Strasbourg

    Google Scholar 

  • Fu X, Chen L, Choo J (2017) Optical probes for ultrasensitive immunoassay. Anal Chem 89:124–137

    Article  Google Scholar 

  • Hjertén S, Liao JL, Zhang R (1989) High-performance liquid chromatography on continuous polymer beds. J Chromatogr A 473:273–275

    Article  Google Scholar 

  • Huang X, Aguilar ZP, Xu H, Li W, Xiong Y (2016a) Membrane-based lateral flow immunochromatograhic strip with nanoparticles as reporters for detection: a review. Biosens Bioelctron 75:166–180

    Article  Google Scholar 

  • Huang H, Jiang D, Zhu P, Pi F, Ji J, Sun C, Sun J, Sun X (2016b) A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosens Bioelctron 83:126–133

    Article  Google Scholar 

  • Husband DL, Mant CT, Hodges RS (2000) Development of simultaneous purification methodology for multiple synthetic peptides by reversed-phase sample displacement chromatography. J Chromatogr A 893:81–94

    Article  Google Scholar 

  • Jain KK (2008) The handbook of nanomedicine. Humana Press, Basel, pp 91–116

    Book  Google Scholar 

  • Jianrong C, Yuging M, Nongyne H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotech Adv 22:505–518

    Article  Google Scholar 

  • Johansson KE, Blomqvist J, Hjertén S (1975) Purification of membrane proteins from Acholeplasma laidlawii by agarose suspension electrophoresis in Tween 20 and polyacrylamide and dextran gel electrophoresis in detergent-free media. J Biol Chem 250:2463–2469

    Article  Google Scholar 

  • Josić D, Andjelković U (2016) The role of proteomics in personalized medicine. In: Bodiroga-Vukobrat N, Pavelić K, Rukavina D, Sander GG (eds) Personalised medicine: a new medical and social challenge (Europeanization and globalization). Springer International Publishing, Switzerland, pp 179–218

    Chapter  Google Scholar 

  • Josić D, Buchacher A (2001) Application of monoliths as supports for affinity chromatography and fast enzymatic conversion. J Biochem Biophys Methods 49:153–174

    Article  Google Scholar 

  • Josić D, Clifton JG (2007) Use of monolithic supports in proteomics technology. J Chromatogr A 1144:2–13

    Article  Google Scholar 

  • Josić D, Zeilinger K, Lim Y-P, Raps M, Hofmann W, Reutter W (1989) Preparative isolation of glycoproteins from plasma membranes of different rat organs. J Chromatogr A 484:327–335

    Article  Google Scholar 

  • Josić D, Reusch J, Löster K, Baum O, Reutter W (1992) High performance membrane chromatography of serum and plasma membrane proteins. J Chromatogr A 590:59–76

    Article  Google Scholar 

  • Josić D, Hoffer L, Buchacher A, Schwill F, Biesert L, Klöcking H-P, Hellstern P, Rokicka-Milewska R, Klukowska A (2000) Manufacturing of prothrombin complex concentrate aiming a low thrombinicity. Thromb Res 100:433–441

    Article  Google Scholar 

  • Kotasinska M, Richter W, Thiemann J, Schlüter H (2012) Cation exchange displacement batch chromatography of proteins guided by screening of protein purification parameters. Electrophoresis 35:3170–3176

    Google Scholar 

  • Liu J, Chen C-F, Chang C-W, DeVoe DL (2010) Flow-through immunosensors using antibody-immobilized polymer monoliths. Biosens Bioelectron 26:182–188

    Article  Google Scholar 

  • Lupinek C, Wollmann E, Baar A, Banerjee S, Breiteneder H, Broecker BM et al (2014) Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods 66:106–119

    Article  Google Scholar 

  • Lusczek ER, Muratore SL, Dubick MA, Beilman J (2017) Assessment of key plasma metabolites in combat causalities. J Trauma Acute Care Surg 82:309–316

    Article  Google Scholar 

  • MacKenzie R, Auzelyte V, Olliges S et al (2009) Nanowire development and characterization for applications in biosensing. In: Micheli G, Leblebici Y, Gijs M, Vörös J (eds) Nanosyst design & technology. Springer, pp 143–173

    Google Scholar 

  • Makaram P, Owens D, Aceros J (2014) Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostica (Basel) 4:27–46

    Google Scholar 

  • Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) ISRN nanobiosensors: concepts and variations nanomaterials. Article ID 327435

    Google Scholar 

  • Manseth E, Skjervold PO, Flengsrud R (2004) Sample displacement chromatography of Atlantic Salmon (Salmo salar) thrombin. J Biochem Biophys Methods 60:39–47

    Article  Google Scholar 

  • Naldi M, Černogoj U, Štrancar A, Bartolini M (2017) Towards automation in protein digestion: development of monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis. Talanta 167:143–157

    Article  Google Scholar 

  • Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK (2017) Point-of-care diagnostic: recent developments in connected age. Anal Chem 89:102–123

    Article  Google Scholar 

  • Nobel Lectures Chemistry 1942–1962 (1964) Elsevier, Amsterdam

    Google Scholar 

  • Odom SR, Howell MD, Silva GS, Nielsen VM, Grupta A, Shapiro NI, Talmor D (2013) Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg 74:999–1004

    Article  Google Scholar 

  • Opal SM, Lim Y-P, Siryaporn E, Moldawer LL, Pribble JP, Palardy JE, Souza S (2007) Longitudinal studies of inter-alpha inhibitor proteins in severely septic patients: a potential clinical marker and mediator of severe sepsis. Crit Care Med 35:387–392

    Article  Google Scholar 

  • Pavelić K, Sedić M, Pavelić Kraljević S (2016) Introduction to personalized medicine. In: Bodiroga-Vukobrat N, Pavelić K, Rukavina D, Sander GG (eds) Personalised medicine: a new medical and social challenge (Europeanization and globalization). Springer International Publishing, Switzerland, pp 300–320

    Google Scholar 

  • Peterson DS, Rohr T, Svec F, Fréchet MJ (2002) Enzymatic microreactor-on-a-chip: protein mapping using trypsin immobilized on porous polymer monoliths moulded in channels of microfluidic devices. Anal Chem 74:4081–4088

    Article  Google Scholar 

  • Podgornik A, Barut M, Štrancar A, Josić D, Koloini T (2000) Construction of large-volume monolithic columns. Anal Chem 72:5693–5699

    Article  Google Scholar 

  • Pučić M, Knežević A, Vidič J, Adamczyk B, Novoknet M, Polašek O (2011) High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10:M111.010090

    Article  Google Scholar 

  • Ručević M, Clifton JG, Huang F, Li X, Callanan H, Hixson DC, Josić D (2006) Use of short monolithic columns for isolation of low abundance membrane proteins. J Chromatogr A 1123:199–204

    Article  Google Scholar 

  • Schiel JE, Tong Z, Sakulthaew C, Hage DS (2011) Development of a flow-based ultafast immunoextraction and reverse displacement immunoassay: analysis of free drug fractions. Anal Chem 83:9387–9390

    Article  Google Scholar 

  • Sheng Z-H, Zheng X-Q, Xu J-Y, Bao W-J, Wang F-B, Xia X-H (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Biolectron 34:125–131

    Article  Google Scholar 

  • Shu Q-H, Shi Z-C, Sun Y (2012) Dynamic behavior of binary component ion-exchange displacement chromatography of proteins visualized by confocal laser scanning microscopy. J Chromatogr A 1257:48–57

    Article  Google Scholar 

  • Šrajer Gajdošik M, Clifton J, Josić D (2012) Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures. J Chromatogr A 1239:1–9

    Article  Google Scholar 

  • Šrajer Gajdošik M, Kovač S, Malatesti N, Müller E, Josić D (2014) Ion-exchange sample displacement chromatography as a method for fast and simple isolation of low- and high-abundance proteins from complex biological mixtures. Food Technol Biotechnol 52:58–63

    Google Scholar 

  • Štrancar A, Koselj P, Schwinn H, Josić D (1996) Application of compact, porous disks for fast separation of biopolymers and in-process control in biotechnology. Anal Chem 68:3483–3488

    Article  Google Scholar 

  • Svec F, Fréchet JM (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273:205–211

    Article  Google Scholar 

  • Svec F, Huber F (2006) Monolithic materials: promises, challenges, achievements. Anal Chem 78:2101–2107

    Article  Google Scholar 

  • Švec F, Lv Y (2015) Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem 87:250–273

    Article  Google Scholar 

  • Tennikova TB, Svec F, Belenkii BG (1990) High performance membrane chromatography. A novel method for protein separation. J Liquid Chromatogr 13:63–70

    Article  Google Scholar 

  • The Royal Swedish Academy of Sciences (2002) Advanced Information on the Nobel Prize in Chemistry 2002. www.nobel.se/chemistry/laureates/2002/chemady.pdf

  • Tiwari A, Turner PF (eds) (2014) Biosensors nanotehnology. Wiley, Scrivene Publishing, USA

    Google Scholar 

  • Trbojević-Akmačić I, Nemec B, Vidič U, Malić S, Miklić K, Černogoj U, Vidič J, Lendero Kranjc N, Štrancar A, Lauc G, Lenac Roviš T, Pučić-Baković M (2016) Chromatographic monoliths for high-throughput immunoaffinity isolation of transferrin from human plasma. Croat Chem Acta 89:203–211

    Article  Google Scholar 

  • Trusch M, Tillack K, Kwiatkowski M, Bertsch A, Ahrends R, Kohlbacher O, Martin R, Sospedra M, Schlüter H (2012) Displacement chromatography as a first separating step in online two-dimensional chromatography coupled to mass spectrometry analysis of complex protein sample – the proteome of neutrophils. J Chromatogr A 1232:288–294

    Article  Google Scholar 

  • Unger KK (1979) Porous silica: its properties and use in column liquid chromatography. J Chromatogr Library, Elsevier

    Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson B (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  • Veeraragavan K, Bernier A, Braendli E (1991) Sample displacement mode chromatography: purification of proteins by use of a high-performance anion-exchange column. J Chromatogr A 541:207–220

    Article  Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  Google Scholar 

  • Wen W, Yan X, Zhu C, Du D, Lin Y (2017) Recent advances in electrochemical immunoassays. Anal Chem 89:138–156

    Article  Google Scholar 

  • Witkowska Nery E, Kundys M, Jeleń PS, Jönsson-Niedziółka M (2016) Electrochemical glucose sensing: is there still room for improvement. Anal Chem 88:11271–11282

    Article  Google Scholar 

  • Wu C, Davey MH, Svec F, Fréchet MJ (2001) Monolithic porous polymer for on-chip solid phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 71:5088–5096

    Google Scholar 

  • Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS (2017) Paper-based microfluidic devices: emerging themes and applications. Anal Chem 89:71–91

    Article  Google Scholar 

  • Zamperi M, Sekar K, Zamboni N, Sauer U (2017) Frontiers of high-throughput metabolomics. Curr Opin Chem Biol 36:15–23

    Article  Google Scholar 

  • Zang F, Wang X, Ai S, Sun Z, Wan Q, Zhu Z, Xian Y, Jin L, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519:155–160

    Article  Google Scholar 

  • Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  Google Scholar 

  • Zhong X, Qiao L, Gasilova N, Liu B, Girault HH (2016) Mass barcode signal amplification for multiplex allergy diagnosis by MALDI-MS. Anal Chem 88:6184–6189

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the European Union (Marie Currie Programme, HTP-Glycomet “Methods for high-throughput glycoproteomic analysis”) and University of Rijeka (Project No. 13.11.1.3.03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djuro Josić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Josić, D., Martinović, T., Černigoj, U., Vidič, J., Pavelić, K. (2019). High-Throughput Analytics in the Function of Personalized Medicine. In: Bodiroga-Vukobrat, N., Rukavina, D., Pavelić, K., Sander, G.G. (eds) Personalized Medicine in Healthcare Systems. Europeanization and Globalization, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-16465-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16465-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16464-5

  • Online ISBN: 978-3-030-16465-2

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics