Skip to main content

Modelling the Creation of Verbal Indoor Route Descriptions for Visually Impaired Travellers

  • Chapter
  • First Online:
Book cover Technological Trends in Improved Mobility of the Visually Impaired

Abstract

Within the field of computer-supported indoor navigation for visually impaired people, the generation of effective verbal route descriptions and directions to be given to the visually impaired person remains challenging. This paper provides a formal and innovative model for the creation of indoor verbal route descriptions (VRDs) with the iterative methodologies from user-centred design, focused on those with visual impairment (VI), and emphasising sufficient evaluation. As one step towards fully automated generation of verbal directions, four sighted persons were tasked with generating VRDs for two routes at Saarbrücken University. The generated VRDs were evaluated with feedback by 11 VIs. This was used to improve the VRDs which were evaluated again by 3 VIs, with the set of 7 directions having the overall result rated as medium. Implications and main pitfalls of the current model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Spatial cognition is concerned with the acquisition, organisation, utilisation and revision of knowledge about spatial environments (Center 2016).

  2. 2.

    Global frames of reference allow to locate other places within the same frame of reference, as for example, using latitude/longitude values (Kitchin et al. 1997, p. 233).

  3. 3.

    Steps 2 and 3 are repeated until the target destination is reached.

References

  • Allen, G. L. (1997). From knowledge to words to wayfinding: Issues in the production and comprehension of route directions. In International Conference on Spatial Information Theory (pp. 363–372).

    Google Scholar 

  • Aporta, C., & Higgs, E. (2005). Satellite culture: Global positioning systems, inuit wayfinding, and the need for a new account of technology. Current Anthropology, 46(5), 729–753. https://doi.org/10.1086/432651

    Article  Google Scholar 

  • Bortz, J. (2005). Statistik für human- und sozialwissenschaftler (6th ed.). Berlin: Springer. https://doi.org/10.1007/b137571

    MATH  Google Scholar 

  • Brunner-Friedrich, B., & Radoczky, V. (2006). Active landmarks in indoor environments. In S. Bres & R. Laurini (Eds.), Visual information and information systems (pp. 203–215). Berlin: Springer.

    Chapter  Google Scholar 

  • Center, B. B. S. C. (2016). Spatial cognition. Retrieved August 14, 2016 from http://bscc.spatial-cognition.de/node/12

    Google Scholar 

  • Chen, M., Lin, H., Liu, D., Zhang, H., & Yue, S. (2015). An objectoriented data model built for blind navigation in outdoor space. Applied Geography, 60, 8494. https://doi.org/10.1016/j.apgeog.2015.03.004

    Article  Google Scholar 

  • Denis, M., Pazzaglia, F., Cornoldi, C., & Bertolo, L. (1999). Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology, 13(2), 145–174. https://doi.org/10.1002/(SICI)1099-0720(199904)13:2h145::AID-ACP550i3.0.CO;2-4

    Article  Google Scholar 

  • Dodds, A. G., Howarth, C. I., & Carter, D. C. (1982). The mental maps of the blind: The role of previous visual experience. Journal of Visual Impairment & Blindness, 76(1), 5–12.

    Google Scholar 

  • Fallah, N., Apostolopoulos, I., Bekris, K., & Folmer, E. (2013). Indoor human navigation systems: A survey (vol. 25, no. 1). Oxford: Oxford University Press. https://doi.org/10.1093/iwc/iws010

    Google Scholar 

  • Fletcher, J. F. (1980). Spatial representation in blind children. 1: Development compared to sighted children. Journal of Visual Impairment and Blindness, 74(10), 381–385.

    Google Scholar 

  • Gaunet, F., & Briffault, X. (2005). Exploring the functional specifications of a localized wayfinding verbal aid for blind pedestrians: Simple and structured urban areas. Human–Computer Interaction, 20, 267–314.

    Article  Google Scholar 

  • Giudice, N. A., Bakdash, J. Z., & Legge, G. E. (2007). Wayfinding with words: Spatial learning and navigation using dynamically updated verbal descriptions (vol. 71, no. 3). https://doi.org/10.1007/s00426-006-0089-8

    Article  Google Scholar 

  • Goetz, M., & Zipf, A. (2013). Indoor route planning with volunteered geographic information on a (mobile) web-based platform. In Progress in location-based services (pp. 211–231). Berlin: Springer.

    Chapter  Google Scholar 

  • Golledge, R. G., Loomis, J. M., Klatzky, R. L., Flury, A., & Yang, X. L. (1991). Designing a personal guidance system to aid navigation without sight: Progress on the GIS component. International Journal of Geographical Information System, 5(4), 373–395.

    Article  Google Scholar 

  • Gomez, J., Langdon, P. M., & Clarkson, P. J. (2016). Navigating the workplace environment as a visually impaired person. In M. Antona & C. Stephanidis (Eds.), Universal access in human-computer interaction. Users and context diversity (pp. 566–576). Cham: Springer.

    Chapter  Google Scholar 

  • Gulliksen, J., Göransson, B., Boivie, I., Persson, J., Blomkvist, S., & Cajander, Å. (2005). Key principles for user-centred systems design. In Human-centered software engineering—integrating usability in the software development lifecycle (pp. 17–36). Berlin: Springer.

    Chapter  Google Scholar 

  • Havik, E. M., Kooijman, A. C., & Steyvers, F. J. (2011). The effectiveness of verbal information provided by electronic travel aids for visually impaired persons. Journal of Visual Impairment & Blindness, 105(10), 624.

    Article  Google Scholar 

  • Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(13), 5945–5952.

    Article  Google Scholar 

  • Ivanov, R. S. (2011). A low-cost indoor navigation system for visually impaired and blind. Communication and Cognition, 44(3), 129.

    Google Scholar 

  • Kaasinen, E. (2003). User needs for location-aware mobile services. Personal and Ubiquitous Computing, 7(1), 70–79.

    Article  Google Scholar 

  • Kalia, A. A., Legge, G. E., & Giudice, N. A. (2008). Learning building layouts with non-geometric visual information: The effects of visual impairment and age. Perception, 37(11), 1677–1699. https://doi.org/10.1068/p5915

    Article  Google Scholar 

  • Karimi, H. A., & Ghafourian, M. (2010). Indoor routing for individuals with special needs and preferences. Transactions in GIS, 14(3), 299–329.

    Article  Google Scholar 

  • Kikiras, P., Tsetsos, V., Papataxiarhis, V., Katsikas, T., & Hadjiefthymiades, S. (2009). User modeling for pedestrian navigation services. In Advances in ubiquitous user modelling (pp. 111–133). Berlin: Springer.

    Chapter  Google Scholar 

  • Kitchin, R. M. (1994). Cognitive maps: What are they and why study them? Journal of Environmental Psychology, 14, 1–19.

    Article  Google Scholar 

  • Kitchin, R. M., Blades, M., & Golledge, R. G. (1997). Understanding spatial concepts at the geographic scale without the use of vision. Progress in Human Geography, 21(2), 225–242. https://doi.org/10.1191/030913297668904166

    Article  Google Scholar 

  • Klatzky, R. L., Golledge, R. G., Loomis, J. M., Cicinelli, J. G., & Pellegrino, J. (1995). Performance of blind and sighted persons on spatial tasks. Journal of Visual Impairment and Blindness, 89(1), 70–82.

    Google Scholar 

  • Koide, S., & Kato, M. (2005). 3-D human navigation system considering various transition preferences. In 2005 IEEE International Conference on Systems, Man and Cybernetics (vol.1, pp. 859–864). https://doi.org/10.1109/ICSMC.2005.1571254

  • Koustriava, E., & Papadopoulos, K. (2016). The impact of orientation and mobility aids on wayfinding of individuals with blindness: Verbal description vs. audio-tactile map. In International conference on universal access in human-computer interaction (pp. 577–585). https://doi.org/10.1007/978-3-319-40250-5

    Google Scholar 

  • Kulyukin, V., Nicholson, J., & Coster, D. (2008). Shoptalk: Toward independent shopping by people with visual impairments. In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 241–242). https://doi.org/10.1145/1414471.1414518

  • Lahav, O., & Mioduser, D. (2003). A blind person’s cognitive mapping of new spaces using a haptic virtual environment. Journal of Research in Special Educational Needs, 3(3), 172–177. https://doi.org/10.1111/1471-3802.00012

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

    Article  Google Scholar 

  • Loomis, J. M., Klatzky, R. L., & Golledge, R. G. (2001). Navigating without vision: Basic and applied research. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 78(5), 282–289. https://doi.org/10.1097/00006324-200105000-00011

    Article  Google Scholar 

  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General, 122(1), 73.

    Article  Google Scholar 

  • Lowdermilk, T. (2013). User-centered design: A developer’s guide to building user-friendly applications. Sebastopol: O’Reilly Media.

    Google Scholar 

  • Michon, P.-E., & Denis, M. (2001). When and why are visual landmarks used in giving directions? In D. R. Montello (Ed.), Spatial information theory (pp. 292–305). Berlin: Springer.

    Chapter  Google Scholar 

  • Nicholson, J. (2010). Generation and analysis of verbal route directions for blind navigation. All graduate theses and dissertations. 672. https://digitalcommons.usu.edu/etd/672

  • Nicholson, J., Kulyukin, V., & Coster, D. (2009). ShopTalk: Independent blind shopping through verbal route directions and barcode scans. The Open Rehabilitation Journal, 2(1), 11–23. https://doi.org/10.2174/1874943700902010011

    Article  Google Scholar 

  • Nicholson, J., Kulyukin, V., & Marston, J. (2009). Building route based maps for the visually impaired from natural language route descriptions. In Proceedings of the 24th International Cartographic Conference (ICC 2009) (pp. 15–21).

    Google Scholar 

  • Papadopoulos, K., Barouti, M., & Koustriava, E. (2016). The improvement of cognitive maps of individuals with blindness through the use of an audio-tactile map. In M. Antona & C. Stephanidis (Eds.), Universal access in human-computer interaction. Interaction techniques and environments (pp. 72–80). Cham: Springer.

    Chapter  Google Scholar 

  • Papataxiarhis, V., Riga, V., Nomikos, V., Sekkas, O., Kolomvatsos, K., Tsetsos, V., et al. (2009). Mnisiklis: Indoor location based services for all. In Location based services and telecartography ii (pp. 263–282). Berlin: Springer.

    Chapter  Google Scholar 

  • Passini, R., & Proulx, G. (1988). Wayfinding without vision an experiment with congenitally totally blind people. Environment and Behavior, 20(2), 227–252. https://doi.org/10.1177/0013916588202006

    Article  Google Scholar 

  • Qin, H., Rice, R. M., Fuhrmann, S., Rice, M. T., Curtin, K. M., & Ong, E. (2015). Geocrowdsourcing and accessibility for dynamic environments. GeoJournal, 81(5), 699–716. https://doi.org/10.1007/s10708-015-9659-x

    Article  Google Scholar 

  • Radoczky, V. (2003). Kartographische unterstützungsmöglichkeiten zur routenbeschreibung von fußgängernavigationssystemen im in-und outdoorbereich. (Unpublished doctoral dissertation), WienInstitut für Kartographie und Geo-Medientechnik, Wien.

    Google Scholar 

  • Ruffa, A. J., Stevens, A., Woodward, N., & Zonfrelli, T. (2015). Assessing iBeacons as an assistive tool for blind people in Denmark. Worcest. Polytech. Inst. Interact. Qualif. Proj. E-Proj.-050115–131140.

    Google Scholar 

  • Saarela, M. (2015). Solving way-finding challenges of a visually impaired person in a shopping mall by strengthening landmarks recognisability with iBeacons. Technical report. Häme University of Applied Sciences, Finland. http://www.hamk.fi/english/collaboration-and-research/smart-services/matec/Documents/solving-way.pdf

    Google Scholar 

  • Schwartz, T., Stahl, C., Müller, C., Dimitrov, V., & Ji, H. (2010). UbiSpot - A user trained always best positioned engine for mobile phones. In 2010 ubiquitous positioning indoor navigation and location based service, UPINLBS 2010 (vol. 11). https://doi.org/10.1109/UPINLBS.2010.5654313

  • Swobodzinski, M., & Raubal, M. (2009). An indoor routing algorithm for the blind: Development and comparison to a routing algorithm for the sighted. International Journal of Geographical Information Science, 23(10), 1315–1343. https://doi.org/10.1080/13658810802421115

    Article  Google Scholar 

  • Tröger, J., Alexandersson, J., Britz, J., Rekrut, M., Bieber, D., & Schwarz, K. (2016). Board games and regulars’ tables—extending user centred design in the mobia project. In International Conference on Human Aspects of it for the Aged Population (pp. 129–140).

    Google Scholar 

  • Tsetsos, V., Anagnostopoulos, C., Kikiras, P., & Hadjiefthymiades, S. (2006). Semantically enriched navigation for indoor environments. International Journal of Web and Grid Services, 2(4), 453. https://doi.org/10.1504/IJWGS.2006.011714

    Article  Google Scholar 

  • Tsuji, B., Lindgaard, G., & Parush, A. (2005). Landmarks for navigators who are visually impaired. In Proceedings of XXII International Cartographic Conference a Coruña 2005 Proceedings, CD.

    Google Scholar 

  • Ungar, S. (2000). Cognitive mapping: Past, present and future. In 11 New Fetter Lane, London EC4P 4EE (1st edn., pp. 221–248). London: Routledge.

    Google Scholar 

  • von Senden, M. (1960). Space and sight: The perception of space and shape in the congenitally blind before and after operation. Oxford, England: Free Press of Glencoe. https://psycnet.apa.org/record/1960-35029-000

    Google Scholar 

  • Williams, M. A., Galbraith, C., Kane, S. K., & Hurst, A. (2014). Just let the cane hit it: How the blind and sighted see navigation differently. In Proceedings of the 16th International ACM Sigaccess Conference on Computers & Accessibility (pp. 217–224). https://doi.org/10.1145/2661334.2661380

  • Zeng, L., & Weber, G. (2015). A pilot study of collaborative accessibility: How blind people find an entrance. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hali Lindsay and Alarith Uhde for helpful feedback and proofreading on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Tröger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tröger, J., Schnebelt, S., Alexandersson, J. (2020). Modelling the Creation of Verbal Indoor Route Descriptions for Visually Impaired Travellers. In: Paiva, S. (eds) Technological Trends in Improved Mobility of the Visually Impaired. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-16450-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16450-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16449-2

  • Online ISBN: 978-3-030-16450-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics