Skip to main content

A Pair Ranking (PRank) Method for Assessing Assay Transferability Among the Toxicogenomics Testing Systems

  • Chapter
  • First Online:
Advances in Computational Toxicology

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 30))

  • 989 Accesses

Abstract

The use of animal models for risk assessment is not a reliable and satisfying paradigm. Accompanying the strategic planned shift by regulatory agencies , more and more advocating campaigns such as the 3Rs in Europe and Tox21 /ToxCast in the USA were proposed to develop in silico and in vitro approaches to eliminate animal use. To effectively implement non-animal models in risk assessment , novel approaches are urgently needed for investigating the concordance between testing systems to facilitate the selection of the fit-for-purpose assay . In this chapter, we introduce a Pair Ranking (PRank ) method for the quantitative evaluation of assay transferability among the different toxicogenomics (TGx) testing systems. First, we will summarize the critical issues of TGx related to its success in risk assessment . Second, we will elucidate the application of proposed PRank method for addressing key questions in TGx. Finally, we will suggest some potential use of the PRank method for advancing risk assessment .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3Rs:

Refine, Reduce and Replace

ALT:

Alanine Aminotransferase

AOPs:

Adverse Outcome Pathways

AST:

Aspartate Aminotransferase

ATC:

Anatomical Therapeutic Chemical

CTD:

Comparative Toxicogenomics Database

DILI:

Drug-Induced Liver Injury

ECFP:

Extended-Connectivity Fingerprints

EPA:

United States Environmental Protection Agency

GLP:

Good Laboratory Practice

hTERT:

Human Telomerase Reverse Transcriptase

ICH:

The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

iPSC:

Induced Pluripotent Stem Cell

IVIVE:

In Vitro-to-In Vivo Extrapolation

LDH:

Lactate Dehydrogenase

LINCS:

The Library of Integrated Network-Based Cellular Signatures

MAQC:

Microarray Quality Control

OECD:

Organisation for Economic Co-operation and Development

POP:

Percentage of Overlapped Pathways

PRank:

Pair Ranking

REACH:

Registration, Evaluation, Authorisation and Restriction of Chemicals

ROC:

Receiver Operating Characteristic

SIDER:

Side Effect Resources

TG-GATEs:

Toxicogenomic Project—Genomics Assisted Toxicity Evaluation System

TGx:

Toxicogenomics

References

  1. Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Models Mech 9(2):101–103

    Article  CAS  Google Scholar 

  2. Perrin S (2014) Make mouse studies work. Nature 507(7493):423–425

    Article  Google Scholar 

  3. Williams ES et al (2009) The European Union’s REACH regulation: a review of its history and requirements. Crit Rev Toxicol 39(7):553–575

    Article  Google Scholar 

  4. Schumann R (2002) The seventh amendment to the cosmetics directive: what does DG enterprise want from ECVAM? ATLA Altern Lab Anim 30:213–214

    CAS  Google Scholar 

  5. Collins FS et al (2008) Transforming environmental health protection. Science 319(5865):906–907

    Article  CAS  Google Scholar 

  6. Kavlock RJ et al (2009) Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal 29(4):485–487

    Article  Google Scholar 

  7. Tice Raymond R et al (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765

    Article  CAS  Google Scholar 

  8. Dix DJ et al (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95(1):5–12

    Article  CAS  Google Scholar 

  9. Hamburg MA (2011) Advancing regulatory science. Science 331(6020):987–987

    Article  Google Scholar 

  10. Chen M et al (2012) A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 130(2):217–228

    Article  CAS  Google Scholar 

  11. Qin C et al (2016) Toxicogenomics in drug development: a match made in heaven? Expert Opinion Drug Metab Toxicol 12(8):847–849

    Article  Google Scholar 

  12. Fielden MR et al (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99(1):90–100

    Article  CAS  Google Scholar 

  13. Liu Z et al (2011) Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships. Chem Res Toxicol 24(7):1062–1070

    Article  CAS  Google Scholar 

  14. Ellinger-Ziegelbauer H et al (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res/Fundam Mol Mech Mutagen 637(1–2):23–39

    Article  CAS  Google Scholar 

  15. Uehara T et al (2008) A toxicogenomics approach for early assessment of potential non-genotoxic hepatocarcinogenicity of chemicals in rats. Toxicology 250(1):15–26

    Article  CAS  Google Scholar 

  16. Gusenleitner D et al (2014) Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action. PLoS ONE 9(7):e102579

    Article  Google Scholar 

  17. Lee WJ et al (2014) Investigating the different mechanisms of genotoxic and non-genotoxic carcinogens by a gene set analysis. PLoS ONE 9(1):e86700

    Article  Google Scholar 

  18. Herwig R et al (2016) Inter-laboratory study of human in vitro toxicogenomics-based tests as alternative methods for evaluating chemical carcinogenicity: a bioinformatics perspective. Arch Toxicol 90(9):2215–2229

    Article  CAS  Google Scholar 

  19. Huang J et al (2010) Genomic indicators in the blood predict drug-induced liver injury. Pharmacogenomics J 10(4):267–277

    Article  CAS  Google Scholar 

  20. Liu Z et al (2016) Mechanistically linked serum miRNAs distinguish between drug induced and fatty liver disease of different grades. Sci Rep 6:23709

    Article  CAS  Google Scholar 

  21. Ruden DM et al (2017) Frontiers in toxicogenomics in the twenty-first century—the grand challenge: to understand how the genome and epigenome interact with the toxic environment at the single-cell, whole-organism, and multi-generational level. Front Genet 8:173

    Article  Google Scholar 

  22. Uehara T et al (2010) The Japanese toxicogenomics project: application of toxicogenomics. Mol Nutr Food Res 54(2):218–227

    Article  CAS  Google Scholar 

  23. Igarashi Y et al (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921–D927 (Database issue)

    Article  CAS  Google Scholar 

  24. Ganter B et al (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119(3):219–244

    Article  CAS  Google Scholar 

  25. Suter L et al (2011) EU framework 6 project: predictive toxicology (PredTox)-overview and outcome. Toxicol Appl Pharmacol 252(2):73–84

    Article  CAS  Google Scholar 

  26. Rowan AN (2015) Ending the use of animals in toxicity testing and risk evaluation. Camb Q Healthc Ethics 24(4):448–458

    Article  Google Scholar 

  27. Kirkland D et al (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens—I. Sensitivity, specificity and relative predictivity. Mutat Res Genet Toxicol Environ Mutagen 584(1–2):1–256

    Article  CAS  Google Scholar 

  28. Nel A et al (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621

    Article  CAS  Google Scholar 

  29. Sonneveld E et al (2006) Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol Sci 89(1):173–187

    Article  CAS  Google Scholar 

  30. Lamb J et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935

    Article  CAS  Google Scholar 

  31. Igarashi Y et al (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43(D1):D921–D927

    Article  CAS  Google Scholar 

  32. Ganter B et al (2006) Toxicogenomics in drug discovery and development: mechanistic analysis of compound/class-dependent effects using the DrugMatrix® database. Pharmacogenomics 7(7):1025–1044

    Article  CAS  Google Scholar 

  33. Sugden LA et al (2013) Assessing the validity and reproducibility of genome-scale predictions. Bioinformatics 29(22):2844–2851

    Article  CAS  Google Scholar 

  34. Chen M et al (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15):697–703

    Article  Google Scholar 

  35. Chen M et al (2016) DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 21(4):648–653

    Article  CAS  Google Scholar 

  36. Wen Z et al (2018) Drug-induced rhabdomyolysis atlas (DIRA) for idiosyncratic adverse drug reaction management. Drug Discov Today 24(1):9–15

    Article  Google Scholar 

  37. Liu ZC et al (2017) In vitro to in vivo extrapolation for drug-induced liver injury using a pair ranking method. ALTEX-Altern Anim Experimentation 34(3):399–408

    Google Scholar 

  38. Liu Z et al (2018) Transcriptional responses reveal similarities between preclinical rat liver testing systems. Front Genet 9:74

    Article  Google Scholar 

  39. Consortium M (2006) The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24(9):1151–1161

    Article  Google Scholar 

  40. Davis AP et al (2017) The comparative toxicogenomics database: update 2017. Nucleic Acids Res 45:D972–D978 (Database issue)

    Article  CAS  Google Scholar 

  41. Hochreiter S et al (2006) A new summarization method for affymetrix probe level data. Bioinformatics 22(8):943–949

    Article  CAS  Google Scholar 

  42. Dai M et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175–e175

    Article  Google Scholar 

  43. Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349(5):474–485

    Article  CAS  Google Scholar 

  44. Xu JJ et al (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105(1):97–105

    Article  CAS  Google Scholar 

  45. Sakatis MZ et al (2012) Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds. Chem Res Toxicol 25(10):2067–2082

    Article  CAS  Google Scholar 

  46. Chen M et al (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8(2):201–213

    Article  CAS  Google Scholar 

  47. Ankley GT et al (2009) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741

    Article  Google Scholar 

  48. Nymark P et al (2018) A data fusion pipeline for generating and enriching adverse outcome pathway descriptions. Toxicol Sci 162(1):264–275

    Article  CAS  Google Scholar 

  49. Bell SM et al (2016) Integrating publicly available data to generate computationally predicted adverse outcome pathways for fatty liver. Toxicol Sci 150(2):510–520

    Article  CAS  Google Scholar 

  50. Bal-Price A, Meek ME (2017) Adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther 179:84–95

    Article  CAS  Google Scholar 

  51. Perkins EJ et al (2015) Adverse outcome pathways for regulatory applications: examination of four case studies with different degrees of completeness and scientific confidence. Toxicol Sci 148(1):14–25

    Article  CAS  Google Scholar 

  52. Patlewicz G et al (2014) Food for thought: read-across approaches—misconceptions, promises and challenges ahead. ALTEX-Altern Anim Experimentation 31(4):387–396

    Google Scholar 

  53. Zhu H et al (2016) t(4) report: supporting read-across using biological data. Altex 33(2):167–182

    Article  Google Scholar 

  54. Subramanian A et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171(6):1437–1452.e1417

    Article  CAS  Google Scholar 

  55. Koleti A et al (2018) Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res 46(D1):D558–D566

    Article  CAS  Google Scholar 

Download references

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Delavan, B., Zhu, L., Robert, R., Tong, W. (2019). A Pair Ranking (PRank) Method for Assessing Assay Transferability Among the Toxicogenomics Testing Systems. In: Hong, H. (eds) Advances in Computational Toxicology. Challenges and Advances in Computational Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-16443-0_9

Download citation

Publish with us

Policies and ethics