Skip to main content

An Overview of Magnetic Material: Preparation and Adsorption Removal of Heavy Metals from Wastewater

  • Chapter
  • First Online:
Magnetic Nanostructures

Abstract

The issue of wastewater impurities along harmful heavy metal ion is rather critical. In this matter, there is a necessity for developed techniques to wastewater treatment. Recently, magnetic-based carbon materials application for the metal ion removal from water has significantly gotten attention. For years, researchers design techniques that emphasize on the magnetic material, in order to attain comprehensive benefit. This paper provided detailed review on the synthesis of magnetic materials. In addition, compressive review on heavy metal was narrated. Hence, magnetic-based material has proven excellent adsorption capacity for waste treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Ghani N, Elchaghaby G (2007) Influence of operating conditions on the removal of Cu, Zn, Cd, and Pb ions from wastewater by adsorption. Int J Environ Sci Technol 4(4):451–456

    Article  CAS  Google Scholar 

  • Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30(29):5737–5750

    Article  CAS  PubMed  Google Scholar 

  • Ademiluyi F, Amadi S, Amakama NJ (2009) Adsorption and treatment of organic contaminants using activated carbon from waste Nigerian bamboo. J Appl Sci Environ Manag 13(3):39–47

    Google Scholar 

  • Agamuthu P, Fauziah S (2011) Challenges and issues in moving towards sustainable landfilling in a transitory country-Malaysia. Waste Manag Res 29(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Alsentzer HA (1963) Ion exchange in water treatment. J Am Water Works Ass 55(6):742–748

    Article  CAS  Google Scholar 

  • Al-Shannag M, Bani-Melhem K, Al-Anber Z, Al-Qodah Z (2013) Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Sep Sci Technol 48(4):673–680

    Article  CAS  Google Scholar 

  • Ardejani FD, Badii K, Limaee NY, Mahmoodi N, Arami M, Shafaei S, Mirhabibi AR (2007) Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent. Dyes Pigments 73(2):178–185

    Article  CAS  Google Scholar 

  • Ates F, Un UT (2013) Production of char from hornbeam sawdust and its performance evaluation in the dye removal. J Anal Appl Pyrolysis 103:159–166

    Article  CAS  Google Scholar 

  • Baig SA, Sheng T, Sun C, Xue X, Tan L, Xu X (2014) Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance. PLoS One 9(6):e100704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson L, Vuorinen A, Lahermo P, Tuovinen OH (1980) Mineralogical, geochemical, and microbiological aspects of iron deposition from groundwater. In: Biogeochemistry of ancient and modern environments. Springer, Berlin/Heidelberg, pp 355–336

    Google Scholar 

  • Chang IS, Kim SN (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochem 40(3):1307–1314

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723

    Article  CAS  PubMed  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807

    Article  CAS  PubMed  Google Scholar 

  • Council MD (2011) Annual Report Cyberjaya: Malaysian Dental Council, 2012

    Google Scholar 

  • Czekaj P, López F, Güell C (2000) Membrane fouling during microfiltration of fermented beverages. J Membr Sci 166(2):199–212

    Article  CAS  Google Scholar 

  • Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–553

    Article  CAS  PubMed  Google Scholar 

  • Eliceche AM, Daviou MC, Hoch PM, Uribe IO (2002) Optimisation of azeotropic distillation columns combined with pervaporation membranes. Comput Chem Eng 26(4):563–573

    Article  CAS  Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13(6):623–642

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Lv S, Dou J, Kong M, Dai D, Si C, Liu G (2015) The efficient adsorption removal of Cr (vi) by using Fe3O4 nanoparticles hybridized with carbonaceous materials. RSC Adv 5(74):60033–60040

    Article  CAS  Google Scholar 

  • Ghorai S, Pant K (2005) Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep Purif Technol 42(3):265–271

    Article  CAS  Google Scholar 

  • Gillman G, Sumpter E (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil Res 24(1):61–66

    Article  CAS  Google Scholar 

  • Gustafson H (1949) Ion exchange in water treatment. Ind Eng Chem 41(3):464–646

    Article  CAS  Google Scholar 

  • Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16(10):931–937

    Article  CAS  Google Scholar 

  • Han Z, Sani B, Akkanen J, Abel S, Nybom I, Karapanagioti HK, Werner D (2015) A critical evaluation of magnetic activated carbon’s potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J Hazard Mater 286:41–47

    Article  CAS  PubMed  Google Scholar 

  • Hill TL (1946) Statistical mechanics of multimolecular adsorption II. Localized and mobile adsorption and absorption. J Chem Phys 14(7):441–453

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56

    Article  CAS  PubMed  Google Scholar 

  • Jiang J-Q, Graham N, André C, Kelsall GH, Brandon N (2002) Laboratory study of electro-coagulation–flotation for water treatment. Water Res 36(16):4064–4078

    Article  CAS  PubMed  Google Scholar 

  • Jiang T-Y, Jiang J, Xu R-K, Li Z (2012) Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Johari A, Ahmed SI, Hashim H, Alkali H, Ramli M (2012) Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew Sustain Energy Rev 16(5):2907–2912

    Article  CAS  Google Scholar 

  • Johari A, Alkali H, Hashim H, Ahmed SI, Mat R (2014) Municipal solid waste management and potential revenue from recycling in Malaysia. Mod Appl Sci 8(4):37

    Article  Google Scholar 

  • Jorgensen T, Weatherley L (2003) Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res 37(8):1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Jovancicevic V, Bockris JM, Carbajal J, Zelenay P, Mizuno T (1986) Adsorption and absorption of chloride ions on passive iron systems. J Electrochem Soc 133(11):2219–2226

    Article  CAS  Google Scholar 

  • Kahani S, Hamadanian M, Vandadi O (eds) (2007) Deposition of magnetite nanoparticles in activated carbons and preparation of magnetic activated carbons. First Sharjah international conference on nanotechnology and its applications (AIP conference proceedings, Vol 929)

    Google Scholar 

  • Kakaei A, Kazemeini M (2016) Removal of Cd (II) in water samples using modified magnetic iron oxide nanoparticle. Iran J Toxicol 10(1):9–14

    CAS  Google Scholar 

  • Kakavandi B, Jafari AJ, Kalantary RR, Nasseri S, Ameri A, Esrafily A (2013) Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iran J Environ Health Sci Eng 10(1):1

    Article  CAS  Google Scholar 

  • Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study. Dyes Pigments 51(1):25–40

    Article  CAS  Google Scholar 

  • Kohn J (1958) Small-scale membrane filter electrophoresis and immuno-electrophoresis. Clin Chim Acta 3(5):450–454

    Article  CAS  PubMed  Google Scholar 

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3(5):547–562

    Article  CAS  Google Scholar 

  • Li Y-H, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266

    Article  CAS  Google Scholar 

  • Li Y-H, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb 2+ on carbon nanotubes. Water Res 39(4):605–609

    Article  CAS  PubMed  Google Scholar 

  • Lim S-F, Zheng Y-M, Chen JP (2009) Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9):4973–4978

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Chen J, Xu Z, Yuan S, Cao M, Liu H, Lu X (2009) Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study. J Hazard Mater 168(2):862–867

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang FS (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101(7):2562–2564

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhao X, Qu J (2010) Electrocoagulation in water treatment. In: Electrochemistry for the environment. Springer, New York, pp 245–262

    Chapter  Google Scholar 

  • Liu WJ, Zeng FX, Jiang H, Zhang XS (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102(17):8247–8825

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Shen X, Yang X, Wang Q, Yang F (2013) Adsorption characteristics of methyl blue onto magnetic Ni0. 5Zn0. 5Fe2O4 nanoparticles prepared by the rapid combustion process. J Nanopart Res 15(6):1–11

    Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–669

    Article  CAS  PubMed  Google Scholar 

  • Lovás M, Znamenáčková I, Zubrik A, Kováčová M, Dolinská S (2011) The application of microwave energy in mineral processing–a review. Acta Montan Slovaca 16(2):137

    Google Scholar 

  • Ma H, Li JB, Liu WW, Miao M, Cheng BJ, Zhu SW (2015) Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresour Technol 190:13–22

    Article  CAS  PubMed  Google Scholar 

  • Marcus Y, SenGupta AK (2001) Ion exchange and solvent extraction: a series of advances. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mohan D, Sarswat A, Singh VK, Alexandre-Franco M, Pittman CU (2011) Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem Eng J 172(2):1111–1125

    Article  CAS  Google Scholar 

  • Mohan D, Kumar H, Sarswat A, Alexandre-Franco M, Pittman CU (2014a) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014b) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: a critical review. Bioresour Technol 160:191–202

    Article  CAS  PubMed  Google Scholar 

  • Mohanty K, Jha M, Meikap BC, Biswas MN (2005) Preparation and characterization of activated carbons from Terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater. Ind Eng Chem Res 44(11):4128–4138

    Article  CAS  Google Scholar 

  • Mohanty K, Das D, Biswas M (2006) Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2):119–121

    Article  CAS  Google Scholar 

  • Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1):83–94

    Article  CAS  Google Scholar 

  • Mou F, Guan J, Ma H, Xu L, Shi W (2012) Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl Mater Interfaces 4(8):3987–3989

    Article  CAS  PubMed  Google Scholar 

  • Mubarak N, Alicia R, Abdullah E, Sahu J, Haslija AA, Tan J (2013) Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J Environ Chem Eng 1(3):486–495

    Article  CAS  Google Scholar 

  • Mubarak NM, Kundu A, Sahu JN, Abdullah EC, Jayakumar NS (2014) Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 61:265–275

    Article  CAS  Google Scholar 

  • Mubarak N, Fo Y, Al-Salim HS, Sahu J, Abdullah E, Nizamuddin S, Ganesan P (2015) Removal of methylene blue and orange-g from waste water using magnetic biochar. Int J Nanosci 14:1550009

    Article  CAS  Google Scholar 

  • Nakahira A, Nishida S, Fukunishi K (2006) Synthesis of magnetic activated carbons for removal of environmental endocrine disrupter using magnetic vector. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 114(1):135–137

    Article  CAS  Google Scholar 

  • Ng HY, Hermanowicz SW (2005) Membrane bioreactor operation at short solids retention times: performance and biomass characteristics. Water Res 39(6):981–992

    Article  CAS  PubMed  Google Scholar 

  • Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189

    Article  CAS  Google Scholar 

  • Park H-D, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72(8):5643–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne KB, Abdel-Fattah TM (2005) Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J Environ Sci Health 40(4):723–77249

    Article  CAS  Google Scholar 

  • Peng L, Ren Y, Gu J, Qin P, Zeng Q, Shao J, Chai L (2014) Iron improving bio-char derived from microalgae on removal of tetracycline from aqueous system. Environ Sci Pollut Res 21(12):7631–7640

    Article  CAS  Google Scholar 

  • Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610

    Article  CAS  PubMed  Google Scholar 

  • Reddy DHK, Lee SM (2014) Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids Surf A Physicochem Eng Asp 454:96–103

    Article  CAS  Google Scholar 

  • Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930

    Article  CAS  Google Scholar 

  • Ruparelia J, Duttagupta S, Chatterjee A, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1):145–156

    Article  CAS  Google Scholar 

  • Schnepp Z, Yang W, Antonietti M, Giordano C (2010) Biotemplating of metal carbide microstructures: the magnetic leaf. Angew Chem Int Ed 49(37):6564–6566

    Article  CAS  Google Scholar 

  • Souza AF, Neto AJS, Câmara LDT (2011) Modeling of batch and continuous adsorption systems by kinetic mechanisms. INTECH Open Access Publisher, 1–16

    Google Scholar 

  • Tarmudi Z, Abdullah ML (2012) Tap AOM. An overview of municipal solid wastes generation in Malaysia. J Teknol 51(1):1–15

    Google Scholar 

  • Thompson JR (1981) Non-deestructive vibratory cleaning system for reverse osmosis and ultra filtration membranes. Google Patents

    Google Scholar 

  • Tian Y, Wu M, Lin X, Huang P, Huang Y (2011) Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater 193:10–16

    Article  CAS  PubMed  Google Scholar 

  • Usman AR, Ahmad M, El-Mahrouky M, Al-Omran A, Ok YS, Sallam AS, Al-Wabel MI (2016) Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ Geochem Health 38:511–521

    Article  CAS  PubMed  Google Scholar 

  • Visser AE, Swatloski RP, Griffin ST, Hartman DH, Rogers RD (2001) Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep Sci Technol 36(5–6):785–804

    Article  CAS  Google Scholar 

  • Visvanathan C, Aim RB, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30(1):1–4

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Wang X, Liu M, Wu Z, Yang L, Zhao J (2013a) Adsorption of Pb (II) from aqueous solution to Ni-doped bamboo charcoal. J Indust Eng Chem 19(1):353–359

    Article  CAS  Google Scholar 

  • Wang W, Wang X, Wang X, Yang L, Wu Z, Xia S, Zhao J (2013b) Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. J Environ Sci 25(9):1726–1735

    Article  CAS  Google Scholar 

  • Wang SY, Tang YK, Li K, Mo YY, Li HF, Gu ZQ (2014) Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresour Technol 174:67–73

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG (2015a) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Sheng G, Qiu Y (2015b) A novel manganese-oxide/biochar composite for efficient removal of lead (II) from aqueous solutions. Int J Environ Sci Technol 12(5):1719–1726

    Article  CAS  Google Scholar 

  • Watanabe H, Tanaka H (1978) A non-ionic surfactant as a new solvent for liquid—liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta 25(10):585–589

    Article  CAS  PubMed  Google Scholar 

  • Waterston K, Wang JW, Bejan D, Bunce NJ (2006) Electrochemical waste water treatment: electrooxidation of acetaminophen. J Appl Electrochem 36(2):227–232

    Article  CAS  Google Scholar 

  • Wibowo N, Setyadhi L, Wibowo D, Setiawan J, Ismadji S (2007) Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. J Hazard Mater 146(1):237–242

    Article  CAS  PubMed  Google Scholar 

  • Yadoji P, Peelamedu R, Agrawal D, Roy R (2003) Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering. Mater Sci Eng B 98(3):269–278

    Article  CAS  Google Scholar 

  • Yan L, Kong L, Qu Z, Li L, Shen G (2014) Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. ACS Sustain Chem Eng 3(1):125–132

    Article  CAS  Google Scholar 

  • Yang C, Qian Y, Zhang L, Feng J (2006) Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater. Chem Eng J 117(2):179–185

    Article  CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2002) Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J Membr Sci 210(2):411–421

    Article  CAS  Google Scholar 

  • Yu JX, Chi RA, Zhang YF, Xu ZG, Xiao CQ, Guo J (2012) A situ co-precipitation method to prepare magnetic PMDA modified sugarcane bagasse and its application for competitive adsorption of methylene blue and basic magenta. Bioresour Technol 110:160–166

    Article  CAS  PubMed  Google Scholar 

  • Yu JX, Wang LY, Chi RA, Zhang YF, Xu ZG, Guo J (2013) Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl Surf Sci 268:163–167

    Article  CAS  Google Scholar 

  • Zahoor M, Khan FA (2014) Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab J Chem 11:729–738

    Article  CAS  Google Scholar 

  • Zhang G, Qu J, Liu H, Cooper AT, Wu R (2007a) Cu Fe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68(6):1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Qu J, Liu H, Cooper AT, Wu R (2007b) CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68(6):1058–1106

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Yu XY, Jin Z, Jia Y, Xu WH, Luo T, Zhu BJ, Liu JH, Huang XJ (2011) Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH (Boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb (II) removal. J Mater Chem 21(41):16550–16557

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013a) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang X, Wang Y, Xia S, Chen L, Zhang Y et al (2013b) Pb (II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. J Environ Sci 25(5):1044–1053

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Gu H, Guo J, Chen M, Wei H, Luo Z, Colorado HA, Yerra N, Ding D, Ho TC (2014a) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr (VI) removal. J Mater Chem A 2(7):2256–2265

    Article  CAS  Google Scholar 

  • Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J (2014b) Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour Technol 154:209–221

    Article  CAS  PubMed  Google Scholar 

  • Zubrik A, Lovás M, Matik M, Štefušová K, Hredzák S (2014) Synthesis of magnetic materials from natural carbon precursors–a review. Inżynieria Mineralna 15:127–130

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Mubarak or E. C. Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruthiraan, M. et al. (2019). An Overview of Magnetic Material: Preparation and Adsorption Removal of Heavy Metals from Wastewater. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_8

Download citation

Publish with us

Policies and ethics