Skip to main content

Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Plant genetic transformation is one of the key technologies for crop improvement in addition to emerging approaches for producing recombinant proteins in plants. Efficient genetic transformation in plants remains a challenge due to the cell wall, a barrier to exogenous biomolecule delivery. Until now, scientists usually transfer the interested genes into plants by Agrobacterium sp., application of some chemicals, and physical techniques (electroporation, microprojectile bombardment, etc.). Recently, nanoparticles including magnetic nanoparticles started to be the most promising materials for any biomolecule delivery including nucleic acids, owing to their ability to traverse plant cell walls without external force and highly tunable physicochemical properties for diverse cargo conjugation and broad host range applicability. In this chapter, we have discussed using nanotechnology through nucleic acid conjugated magnetic nanoparticles with their current status and future prospects in the development of gene transfer methods in plants. We have also discussed the mechanism of their entry and some recommendations for their future perspectives to improve efficacy, stability, and accuracy making it less time-consuming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agotegaray M et al (2016) Influence of chitosan coating on magnetic nanoparticles in endothelial cells and acute tissue biodistribution. J Biomater Sci Polym Ed 27(11):1069–1085

    Article  CAS  Google Scholar 

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, Gottardo S, Marvin HJ, Mech A, Pesudo LQ, Rauscher H (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463–476

    Article  Google Scholar 

  • Arts JH, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K (2014) A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol 70(2):492–506

    Article  CAS  Google Scholar 

  • Berestovsky GN, Ternovsky VI, Kataev AA (2001) Through pore diameter in the cell wall of Chara Corallina. J Exp Bot 52(359):1173–1177

    Article  CAS  Google Scholar 

  • Chouly C et al (1996) Development of superparamagnetic nanoparticles for mri: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255

    Article  CAS  Google Scholar 

  • Cordero T, Mohamed MA, López-Moya JJ, Daròs JA (2017) A recombinant potato virus y infectious clone tagged with the rosea1 visual marker (pvy-ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Front Microbiol 8:611

    Article  Google Scholar 

  • Deng XY, Wei ZM, An H (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11(2):156–160

    Article  CAS  Google Scholar 

  • Dyab AK, Mohamed MA, Meligi NM, Mohamed SK (2018) Encapsulation of erythromycin and bacitracin antibiotics into natural sporopollenin microcapsules: antibacterial, cytotoxicity, in vitro and in vivo release studies for enhanced bioavailability. RSC Adv 8(58):33432–33444

    Article  CAS  Google Scholar 

  • Eichert T, Andreas K, Ulrike S, Heiner EG (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160

    Article  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald A (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838

    Article  CAS  Google Scholar 

  • Gubin SP, Yurii AK, Khomutov GB, Gleb YY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489–520

    Article  CAS  Google Scholar 

  • Handford CE, Dean M, Spence M, Henchion M, Elliott CT, Campbell K (2015) Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 57:24–34

    Article  Google Scholar 

  • Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for mri, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33(6):1162–1176

    Article  CAS  Google Scholar 

  • Jia G et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. https://pubs.acs.org/doi/10.1021/es048729l, 23 Jan 2019

  • Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG (2013) Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 13(3):1059–1064

    Article  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  Google Scholar 

  • Knell M (2010) Nanotechnology and the sixth technological revolution. In: Nanotechnology and the challenges of equity, equality and development. Springer Netherlands, Dordrecht, pp 127–143

    Chapter  Google Scholar 

  • Lévy R, Umbreen S, Yann C, Violaine S (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1:4889

    Article  Google Scholar 

  • Li C, Guo T, Zhou D, Hu Y, Zhou H, Wang S, Chen J, Zhang Z (2011) A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154(2):177–188

    Article  CAS  Google Scholar 

  • Liu J, Wang FH, Wang LL, Xiao SY, Tong CY, Tang DY, Liu XM (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent South Univ Technol 15(6):768–773

    Article  CAS  Google Scholar 

  • Ma X, Jane G, Yang D, Andrei K (2010) Interactions between engineered nanoparticles (enps) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  Google Scholar 

  • McKnight TE, Melechko AV, Hensley DK, Mann DG, Griffin GD, Simpson ML (2004) Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays. Nano Lett 4(7):1213–1219

    Article  CAS  Google Scholar 

  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14: 551–556

    Google Scholar 

  • Mishra S, Singh HB (2015) Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana. Microbiol Res 172:16–18

    Article  CAS  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Plant microbes symbiosis: applied facets. Springer India, New Delhi, pp 111–125

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  Google Scholar 

  • Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    Article  CAS  Google Scholar 

  • Niemeyer A, Christof M (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem 40(22):4128–4158

    Article  CAS  Google Scholar 

  • Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche JM, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504

    Article  CAS  Google Scholar 

  • Rai M, Deshmukh S, Gade A, Abd Elsalam K (2012) Strategic nanoparticle-mediated gene transfer in plants and animals-a novel approach. Curr Nanosci 8:170–179

    Article  CAS  Google Scholar 

  • Reid RJ, Zhang Q, Sekimoto H (2001) Influence of membrane surface charge on nutrient uptake by plants. In: Plant nutrition. Springer Netherlands, Dordrecht, pp 198–199

    Chapter  Google Scholar 

  • Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40(2):127–148

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499

    Article  CAS  Google Scholar 

  • Silva LCD, Marco AO, Aristéa AA, João Marco DA (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175(1–4):241–256

    Article  Google Scholar 

  • Subhankar B, Wolfgang K (2009) Supermagnetism. J Phys D Appl Phys 42(1):13001

    Article  Google Scholar 

  • Tokmachev AM, Averyanov DV, Parfenov OE, Taldenkov AN, Karateev IA, Sokolov IS, Kondratev OA, Storchak VG (2018) Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun 9(1):1672

    Article  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042

    Article  CAS  Google Scholar 

  • Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16(1):69–78

    Article  CAS  Google Scholar 

  • WHO (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. WHO. https://www.who.int/foodsafety/publications/nanotechnology-2013/en/, 24 Jan 2019

  • Wiesman Z, Dom NB, Sharvit E, Grinberg S, Linder C, Heldman E, Zaccai M (2007) Novel cationic vesicle platform derived from vernonia oil for efficient delivery of dna through plant cuticle membranes. J Biotechnol 130(1):85–94

    Article  CAS  Google Scholar 

  • Wu W, Quanguo H, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  CAS  Google Scholar 

  • Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884

    Article  CAS  Google Scholar 

  • Zhang R, Meng Z, Abid MA, Zhao X (2019) Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In: Transgenic cotton. Humana Press, New York, pp 47–54

    Chapter  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The first author would like to acknowledge Dr. Suzan Eid for her contentious support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, M.A., Abd-Elsalam, K.A. (2019). Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_6

Download citation

Publish with us

Policies and ethics