Skip to main content

Antimicrobial Activity of Magnetic Nanostructures

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Magnetic nanostructures have attracted considerable attention due to its properties such as coercivity, biocompatibility, high magnetic susceptibility, morphology, and other surface properties. Due to the unique characteristics of magnetic nanostructures, they have a wide range of domestic and commercial applications in various domains like biology, agriculture, environment, medicine, physics, electronics, pharmaceutical, industry, and so on. Magnetic nanostructures are preferred in biological applications because of their potential to function at the cellular and molecular levels and minimal harmful effects compared to their bulk material form. Microbial infection is a major concern in day-to-day life and is also impacting numerous sectors like water treatment, food packaging, cloth industry, marine transport, and medicine. The current chapter focuses on magnetic nanostructures showing antimicrobial activity, their antimicrobial mechanism, factors affecting the antimicrobial activity, benefits and limitations of magnetic nanoparticles as an antimicrobial agent, and methods used for testing antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL (2015) Effect of silver nanoparticle geometry on methicillin-susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26(7):215

    Article  PubMed  CAS  Google Scholar 

  • Alahmadi NS, Betts JW, Cheng F, Francesconi MG, Kelly SM, Kornherr A, Priora TJ, Wadhawan JD (2017) Synthesis and antibacterial effects of cobalt– cellulose magnetic nanocomposites. RSC Adv 7:20020

    Article  Google Scholar 

  • Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Al-Omair MA, Khalaf MM, Touny AH, Elsawy H, Saleh MM (2018) Antimicrobial activities of mesoporous nickel phosphate synthesized with low-temperature method. Microchem J 145:113–118

    Article  CAS  Google Scholar 

  • Anaya NM, Solomon F, Oyanedel-Craver V (2016) Effects of dysprosium oxide nanoparticles on Escherichia coli. Environ Sci Nano 3(1):67–73

    Article  CAS  Google Scholar 

  • Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Olea-Mejía OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int 24(4):321–328

    Article  CAS  Google Scholar 

  • Aruguete DM, Bojeong K, Michael FH, Yanjun M, Yingwen C, Andy H, Jie L, Amy P (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci: Processes Impacts 15:93–102

    CAS  Google Scholar 

  • Ashour AH, El-Batal AI, Maksoud MIAA, El-Sayyad GS, Labib S, Abdeltwab E, El-Okr MM (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology 40:141–151

    Article  CAS  Google Scholar 

  • Bronshteint I, Aulova S, Juzeniene A, Iani V, Ma LW, Smith KM, Malik Z, Moan J, Ehrenberg B (2006) In vitro and in vivo photosensitization by protoporphyrins possessing different lipophilicities and vertical localization in the membrane. Photochem Photobiol 82:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao H, Meng F, Liu X (2016) Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. J Vac Sci Technol A 34(4):04C102

    Article  CAS  Google Scholar 

  • Chaudhary RG, Tanna JA, Gandhare NV, Rai AR, Juneja HD (2015) Synthesis of nickel nanoparticles: microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv Mater Let 6(11):990–998

    Article  CAS  Google Scholar 

  • Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH (2010) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3:244–255

    Article  CAS  Google Scholar 

  • Dědková K, Kuzníková Ľ, Pavelek L, Matějová K, Kupková J, Čech Barabaszová K, Váňa R, Burda J, Vlček J, Cvejn D, Kukutschová J (2017) Daylight induced antibacterial activity of gadolinium oxide, samarium oxide and erbium oxide nanoparticles and their aquatic toxicity. Mater Chem Phys 197:226–235

    Article  CAS  Google Scholar 

  • Dighore N, Jadhav S, Anandgaonker P, Gaikwad S, Rajbho A (2017) Molybdenum oxide nanoparticles as antimicrobial agents. J Clust Sci 28(1):109–118

    Article  CAS  Google Scholar 

  • Fakhri A, Nejad PA (2016) Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J Photochem Photobiol B 159:211–217

    Article  CAS  PubMed  Google Scholar 

  • Fazio E, Santoro M, Lentini G, Franco D, Guglielmino SPP, Neri F (2016) Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity. Colloids Surf A Physicochem Eng Asp 490:98–103

    Article  CAS  Google Scholar 

  • Giannousi K, Menelaou M, Arvanitidis J, Angelakeris M, Pantazaki A, Dendrinou-Samara C (2015) Hetero-nanocomposites of magnetic and antifungal nanoparticles as a platform for magnetomechanical stress induction in Saccharomyces cerevisiae. J Mater Chem B 3(26):5341–5351

    Article  CAS  PubMed  Google Scholar 

  • Gingasu D, Mindru I, Patron L, Ianculescu A, Vasile E, Marinescu G, Preda S, Diamandescu L, Oprea O, Popa M, Saviuc C, Chifiriuc MC (2018) Synthesis and characterization of chitosan-coated cobalt ferrite nanoparticles and their antimicrobial activity. J Inorg Organomet Polym Mater 28(5):1932–1941

    Article  CAS  Google Scholar 

  • Gopinath K, Chinnadurai M, Devi NP, Bhakyaraj K, Kumaraguru S, Baranisri T, Sudha A, Zeeshan M, Arumugam A, Govindarajan M, Alharbi NS, Kadaikunnan S, Benelli G (2016) One-pot synthesis of dysprosium oxide nano-sheets: antimicrobial potential and cyotoxicity on a549 lung cancer cells. J Clust Sci 28(1):621–635

    Article  CAS  Google Scholar 

  • Graves JL Jr, Thomas M, Ewunkem JA (2017) Antimicrobial nanomaterials: why evolution matters. Nanomaterials 7:283

    Article  PubMed Central  CAS  Google Scholar 

  • Guo BL, Han P, Guo LC, Cao YQ, Li AD, Kong JZ, Zhai HF, Wu D (2015) The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res Lett 10:336

    Article  PubMed Central  CAS  Google Scholar 

  • Hassan AA, Oraby NH, El-Dahshan EM, Ali MA (2015) Antimicrobial potential of iron oxide nanoparticles in control of some causes of microbial skin affection in cattle. Eur J Acad Essays 2(6):20–31

    Google Scholar 

  • Hatamie S, Nouri M, Karandikar SK, Kulkarni A, Dhole SD, Phase DM, Kale SN (2012) Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Mater Sci Eng C 32:92–97

    Article  CAS  Google Scholar 

  • Hathout AS, Aljawish A, Sabry BA, El-Nekeety AA, Roby MH, Deraz NM, Aly SE, Abdel-Wahhab MA (2017) Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. J Appl Pharm Sci 7(1):86–92

    Article  CAS  Google Scholar 

  • Hausdorfer J, Sompek E, Allerberger F, Dierich MP, Rüsch-Gerdes S (1998) E-test for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2:751–755

    CAS  PubMed  Google Scholar 

  • He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. NanoBiotechnology 14(1):54

    Article  CAS  Google Scholar 

  • Hong X, Wen J, Xiong X, Hu Y (2016) Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 23(5):4489–4497

    Article  CAS  PubMed  Google Scholar 

  • Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM (2017) A review on nano-antimicrobials: metal nanoparticles, methods, and mechanisms. Curr Drug Metab 18(0):1–9

    Google Scholar 

  • Hsueh YH, Tsai PH, Lin KS, Ke WJ, Chiang CL (2017) Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains. J Nanobiotechnol 15:77

    Article  CAS  Google Scholar 

  • Huang HL, Chang YY, Chen HJ, Chou YK, Lai CH, Chen MYC (2014) Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. J Vac Sci Technol A 32(2):02B117

    Article  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  • Ibrahem EJ, Thalij KM, Badawy AS (2017) Antibacterial potential of magnesium oxide nanoparticles synthesized by Aspergillus niger. Biotechnol J Int 18(1):1–7

    Article  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Khadar YAS, Balamurugan A, Devarajan VP, Subramanian R (2017) Hydrothermal synthesis of gadolinium (Gd) doped cerium oxide (CeO2) nanoparticles: characterization and antibacterial activity. Orient J Chem 33(5):2405–2411

    Article  CAS  Google Scholar 

  • Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344–355

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy K, Premanathan M, Veerapandian M, Kim SJ (2014) Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria. Nanotechnology 25(31):315101

    Article  PubMed  CAS  Google Scholar 

  • Kuang Y, He X, Zhang Z, Li Y, Zhang H, Ma Y, Wu Z, Chai Z (2011) Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol 11:4103–4108

    Article  CAS  PubMed  Google Scholar 

  • Leroueil PR, Hong S, Mecke A, Baker JR Jr, Orr BG, Banaszak Holl MM (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 40:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ST, Qiao XL, Chen JG, Wu CL, Mei B (2005) The investigation of antibacterial characteristics of magnesium oxide and it’s nano-composite materials. J Funct Mater 11:1651–1654

    Google Scholar 

  • Limban C, Missir AV, Caproiu MT, Grumezescu AM, Chifiriuc MC, Bleotu C, Marutescu L, Papacocea M, Nuta DC (2018) Novel hybrid formulations based on thiourea derivatives and core@shell Fe3O4@C18 nanostructures for the development of antifungal strategies. Nanomaterials 8:47

    Article  PubMed Central  CAS  Google Scholar 

  • Linlin W, Chen H, Longquan S (2018) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  PubMed  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  CAS  PubMed  Google Scholar 

  • Lopes E, Piçarra S, Almeida PL, de Lencastre H, Aires-de-Sousa M (2018) Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens. J Med Microbiol 67:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Abarrategui C, Figueroa-Espi V, Lugo-Alvarez MB, Pereira CD, Garay H, Barbosa JA, Falcão R, Jiménez-Hernández L, Estévez-Hernández O, Reguera E, Franco OL (2016) The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm–p5. Int J Nanomedicine 11:3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magaldi S, Mata-Essayag S, De Capriles CH, Perez C, Colella MT, Olaizola C, Ontiveros Y (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45

    Article  CAS  PubMed  Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Masoumbaigi H, Rezaee A, Hosseini H, Hashemi S (2015) Water disinfection by zinc oxide nanoparticle prepared with solution combustion method. Desalin Water Treat 56:2376–2381

    Article  CAS  Google Scholar 

  • Meng L, Wu Y, Pan K, Zhu Y, Li X, Wei W, Liu X (2019) Polymeric nanoparticles-based multi-functional coatings on NiTi alloy with nickel ion release control, cytocompatibility, and antibacterial performance. New J Chem 43(3):1551–1561

    Article  CAS  Google Scholar 

  • Mirhosseini M, Afzali M (2016) Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 68:208–215

    Article  CAS  Google Scholar 

  • Mirhosseini M, Hafshejani BK, Dashtestani F, Hakimian F, Haghirosadat BF (2018) Antibacterial activity of nickel and nickel hydroxide nanoparticles against multidrug resistance K. pneumonia and E. coli isolated urinary tract. Nanomed J 5(1):19–26

    Google Scholar 

  • Nehra P, Chauhan RP, Garg N, Verma K (2018) Antibacterial and antifungal activity of chitosan-coated iron oxide nanoparticles. Br J Biomed Sci 5(1):13–18

    Article  Google Scholar 

  • Nguyen NYT, Grelling N, Wetteland CL, Rosario R, Liu H (2018) Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep 8(1):16260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R (2017) Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA–13. Sci Rep 7(1):4610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nijs A, Cartuyvels R, Mewis A, Peeters V, Rummens JL, Magerman K (2003) Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility systems in the clinical microbiology laboratory. J Clin Microbiol 41:3627–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Pico F, Yliniemi K, Kontturi K (2010) Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288:543–553

    Article  CAS  Google Scholar 

  • Pandian CJ, Palanivel R, Dhanasekaran S (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanopart 1:1–13

    Article  CAS  Google Scholar 

  • Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292

    Article  CAS  PubMed  Google Scholar 

  • Prabhuswamy Spoorthy H, Satish S, Dharamappa Rekha N (2017) Biosynthesis of nickel nanoparticles from bacteria and evaluation of their biological activity. J Pharm Res 11(5):459–463

    Google Scholar 

  • Prasannakumar JB, Vidya YS, Anantharaju KS, Ramgopal G, Nagabhushana H, Sharma SC, Prasad BD, Prashantha SC, Basavaraj RB, Rajanaik H, Lingaraju K, Prabhakara KR, Nagaswarupa HP (2015) Bio-mediated route for the synthesis of shape tunable Y2O3: Tb3+ nanoparticles: photoluminescence and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 151:131–140

    Article  CAS  PubMed  Google Scholar 

  • Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, Kolář M, Tománková K, Zbořil R (2011) The targeted antibacterial and antifungal properties of the magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32(21):4704–4713

    Article  CAS  PubMed  Google Scholar 

  • Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E (2010) Use of zinc oxide nanoparticles for production of antimicrobial textiles. Int J Eng Sci Technol 2:202–208

    Article  Google Scholar 

  • Saldanha CA, Garcia MP, Iocca DC, Rebelo LG, Souza ACO, Bocca AL, Santos MDFMA, Morais PC, Azevedo RB (2016) Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of paracoccidioidomycosis. PLoS Negl Trop Dis 10(6):e0004754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samiei M, Farjami A, Dizaj SM, Lotfipour F (2016) Nanoparticles for antimicrobial purposes in Endodontics: a systematic review of in vitro studies. Mater Sci Eng C 58:1269–1278

    Article  CAS  Google Scholar 

  • Seddighi NS, Salari S, Izadi AR (2017) Evaluation of the antifungal effect of iron-oxide nanoparticles against different Candida species. IET Nanobiotechnol 11(7):883–888

    Article  PubMed Central  Google Scholar 

  • Seil TS, Websters TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781

    CAS  Google Scholar 

  • Selvaraju C, Karthick R, Veerasubam R (2018) The modification of structural, optical and antibacterial activity properties of rare earth Gadolinium-Doped ZnO nanoparticles prepared by co-precipitation method. J Inorg Organomet Polym 1:1–7

    Google Scholar 

  • Shrifian-Esfahni A, Salehi MT, Nasr-Esfahni M, Ekramian E (2015) Chitosan-modified superparamagnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik 69(1):19–32

    CAS  Google Scholar 

  • Singh S, Patel P, Jaiswal S, Prabhune AA, Ramana CV, Prasad BLV (2009) A direct method for the preparation of glycolipid- metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem 33:646–652

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7(3):219–242

    Article  CAS  Google Scholar 

  • Slavin YN, Jason Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  CAS  Google Scholar 

  • Spacciapoli P, Buxton D, Rothstein D, Friden P (2001) Antimicrobial activity of silver nitrate against periodontal pathogens. J Periodontal Res 36:108–113

    Article  CAS  PubMed  Google Scholar 

  • Spoorthy HP, Rekha ND, Satish S (2017) Biosynthesis nickel nanoparticle by microorganism and their biological activity. Der Pharma Chemica 9(13):80–84

    CAS  Google Scholar 

  • Tang ZX, Lv BF (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31(3):591–601

    Article  Google Scholar 

  • Vahedi M, Hosseini-Jazani N, Yousefi S, Maryam Ghahremani M (2017) Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iran J Microbiol 9(3):160–168

    PubMed  PubMed Central  Google Scholar 

  • Valgas C, De Souza SM, Smânia EFA, Jret AS (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380

    Article  Google Scholar 

  • Varaprasad T, Govindh B, Rao BV (2017) Green synthesized cobalt nanoparticles using Asparagus racemosus root extract & evaluation of antibacterial activity. Int Chem Tech 10(9):339–345

    CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249

    Article  CAS  Google Scholar 

  • White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40:1914–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 23:2121–2134

    Article  CAS  Google Scholar 

  • Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427

    Article  CAS  PubMed  Google Scholar 

  • Zielinska-Jurek A, Wei Z, Wysocka I, Szweda P, Kowalska E (2015) The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl Surf Sci 353:317–325

    Article  CAS  Google Scholar 

  • Žalnėravičius R, Paškevičius A, Kurtinaitiene M, Jagminas A (2018) Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles. J Nanopart Res 18(10):300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nehra, P., Chauhan, R.P. (2019). Antimicrobial Activity of Magnetic Nanostructures. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_16

Download citation

Publish with us

Policies and ethics