Skip to main content

Nanoparticles: Magnetism and Applications

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Magnetic nanoparticles are of great interest due to their multiple technological implementations like biomedical and magnetic resonance imaging applications. Several methods are used in magnetic nanoparticle fabrication, and all of them are based on the bottom-up and the top-down approaches. The top-down approach is used to produce nanoparticles from a large-scale material, in contrast with bottom-up approach that built nanoparticles from small molecules. Magnetic nanoparticle shows interesting phenomena when the size goes below a certain value as the superparamagnetism. Superparamagnetic particles show high magnetization with zero coercive field, preventing their agglomeration after the removing of magnetic field, nominating them as good candidates for medical applications. The magnetic properties of nanoparticles depend on several factors, such as size, shape, and morphology. Therefore, it can be said that the magnetic properties of nanoparticles can be tuned to match the desired application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andra W, Ambly CG, Hergt R (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194(1–3):197–203

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311(1):10–16

    Article  CAS  Google Scholar 

  • Bjernerud A (2008) The physics of magnetic resonance imaging, compendium. Department of Physics, University of Oslo, Norway

    Google Scholar 

  • Chen X, Schluesener H (2008) Nanosilver: nanoproduct in medical application. Toxicol Lett 176(1):1–12

    Article  CAS  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(8):326–343

    Article  CAS  Google Scholar 

  • Cullity BD, Graham CD (2008) Introduction to magnetic materials, 2nd edn. Wiley IEEE Press, Hoboken, pp 495–496

    Book  Google Scholar 

  • Dai Z, Meiser F, Mohwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J Colloid Interface Sci 288(1):298–300

    Article  CAS  Google Scholar 

  • Estelrich J, Sanchez–Martin MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faraudo J, Camacho J (2010) Erratum to: cooperative magnetophoresis of superparamagnetic colloids: theoretical aspects. Colloid Polym Sci 288:207–215

    Article  CAS  Google Scholar 

  • Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):831–844

    Article  CAS  Google Scholar 

  • Giri SK, Dasgupta P, Poddar A, Nath TK (2015) Tuning of normal and inverse magnetocaloric effect in Sm0.35Pr0.15Sr0.5MnO3 phase separated manganites. J Alloys Compd 631:266–271

    Article  CAS  Google Scholar 

  • Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103(44):9533–9539

    Article  CAS  Google Scholar 

  • Ikeda N, Hayashida O, Kameda H, Ito H, Matsuda T (1994) Experimental study on thermal damage to dog normal brain. Int J Hyperthermia 13:129

    Google Scholar 

  • Jordan A, Scholz R, Wust P, Fahling H, Gordan RF (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201(1–3):413–419

    Article  CAS  Google Scholar 

  • Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009

    Article  Google Scholar 

  • Lam T, Pouliot P, Avti PK, Lesage F, Kakkar AK (2013) Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 199–200:95–113

    Article  Google Scholar 

  • Malik MA, O’Brien P, Revaprasadu N (2002) Air–stable single–source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem Mater 14(3):2004–2920

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Mihyun P, Lee N, Choi SH, An K, Yu SH, Kim JH, Kwon SH, Kim D, Kim H, Baek S, Ahn TY, Park OK, Son JS, Sung YE, Kim YW, Wang Z, Pinna N, Hyeon T (2011) Large–scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chem Mater 23(14):3318–3324

    Article  Google Scholar 

  • Mohapatra J, Mitra A, Bahadur D, Aslam M (2013) Surface controlled synthesis of MFe2O4 (M = Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15(3):524–532

    Article  CAS  Google Scholar 

  • Montet X, Funovics M, Montet–Abou K, Weissleder R, Josephson L (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49(20):6087–6093

    Article  CAS  Google Scholar 

  • Paparazzo E, Fansoni M, Severini E, Priori S (1992) Evidence of Si–OH species at the surface of aged silica. J Vac Sci Technol 10:2892–2896

    Article  CAS  Google Scholar 

  • Peiris MK, Gunasekara CP, Jayaweera PM, Arachchi ND, Fernando N (2017) Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem Inst Oswaldo Cruz 112(8):537–543

    Article  CAS  Google Scholar 

  • Qiu S, Dong J, Chen G (1999) Preparation of Cu nanoparticles from water–in–oil microemulsions. J Colloid Interface Sci 216(2):230–234

    Article  CAS  Google Scholar 

  • Scherer C, Neto AMF (2005) Ferrofluids: properties and applications. Braz J Phys 35(3A):718–727

    Article  CAS  Google Scholar 

  • Shawd J (1992) Colloid and surface science, 4th edn. Butterworth-Heinemann Ltd, Oxford, pp 124–125

    Google Scholar 

  • Shido Y, Nishida Y, Suzuki Y, Kobayashi T, Ishiguro N (2010) Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model. J Bone Joint Surg Br 94(4):580–585

    Article  Google Scholar 

  • Song Q, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168

    Article  CAS  Google Scholar 

  • Stauffer PR, Cetas TC, Jones RC (1982) System for producing localized hyperthermia in tumors through induction heating of ferromagnetic implants. Natl Cancer Inst Monogr 61(82–2437):483–487

    Google Scholar 

  • Vallejo-Fernandez G, Whear O, Roca AG, Hussain S, Timmis J, Patel V, O'Grady K (2013) Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys 46:312001–312006

    Article  Google Scholar 

  • Wang Y, Zhao X, Du W, Liu J, Chen W, Sun C, Cui B, Zeng Z, Shen Y, Gao F, Wang A, Liu G, Cui H (2017) Production of transgenic mice through sperm–mediated gene transfer using magnetic Nano–carriers. J Biomed Nanotechnol 13(12):1673–1681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

First author would like to acknowledge Basma F for contentious support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-Moez A. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, A.EM.A., Mohamed, M.A. (2019). Nanoparticles: Magnetism and Applications. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_1

Download citation

Publish with us

Policies and ethics