Skip to main content

Design and Analysis of a Lower Limb Exoskeleton for Rehabilitation

  • Conference paper
  • First Online:
Interdisciplinary Applications of Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 71))

Abstract

Nowadays, the growing development of technologies has led to look for optimal and efficient solutions to activities that are done by human precision. Particularly, in a medical environment, it should be ensured that the technologies used in patients provide the acceptable conditions in health, safety and care; with high precision. Exoskeletons for medical use are designed to provide therapies for patients with walking disabilities. The purpose is to assist patients in the recovery of their motor capacity through the movements that the device performs. In Peru, most of the therapies are performed manually, involving a routine of movements in which the physical effort of a physiotherapist is required. The technology of exoskeletons makes possible use its precision to achieve controlled movements with a given speed, to produce consecutive homogeneous repetitions, to generate opposition forces or resistance to some kind of movement in a rehabilitation routine, among others. This paper focuses on the design and evaluation of a lower limb exoskeleton which can help in the rehabilitation of patients with some mobility problem, thus contributing to the social insertion, psychological well being, and improvement of the quality of life of patients in Peru. The designed exoskeleton, based on a pneumatic artificial muscle actuator, will serve to an average 11 years old child to an adult and has a four degrees of freedom (DoF) in each lower limb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, S.: Advanced Robotics for Medical Rehabilitation: Current State of the Art and Recent Advances, vol. 108. Springer (2015)

    Google Scholar 

  2. Primera Encuesta Nacional Especializada sobre DISCAPACIDAD 2012. Instituto Nacional de Estadstica e Informtica. http://www.regionlalibertad.gob.pe/ineiestadisticas/, Mar 2014

  3. Laguna, J.: Derecho a la salud de las personas con discapacidad, ser. Colección Estudios sobre discapacidad en el Perú. Comisión Especial de Estudio sobre Discapacidad del Congreso de la República. https://books.google.com.br/books?id=V70UAQAAIAAJ (2006)

  4. HAL corporate identification. https://www.cyberdyne.jp/english/company/index.html. Accessed 10 June 2017

  5. Zelinsky, A.: Robot suit hybrid assistive limb [industrial activities]. IEEE Robot. Autom. Mag. 16(4), 98–98, 102 (2009)

    Google Scholar 

  6. Sankai, Y.: Hal: hybrid assistive limb based on cybernics. In: Robotics Research, pp. 25–34. Springer (2010)

    Google Scholar 

  7. Hocoma about us. https://www.hocoma.com/hocoma/about-us/. Accessed 10 June 2017

  8. Neckel, N., Wisman, W., Hidler, J.: Limb alignment and kinematics inside a lokomat robotic orthosis. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, August 2006, pp. 2698–2701 (2006)

    Google Scholar 

  9. Functional robotic gait therapy. https://www.hocoma.com/wp-content/uploads/2016/08/bro_LokomatPro_141008_en.pdf. Accessed 10 June 2017

  10. Spungen, A.M., Asselin, P., Fineberg, D.B., Kornfeld, S.D., Harel, N.Y.: Exoskeletal-assisted walking for persons with motor-complete paraplegia. Res. Technol. Organ. Hum. Factors Med. Panel N. Atl. Treaty Organ. (2013)

    Google Scholar 

  11. Talaty, M., Esquenazi, A., Briceo, J.E.: Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), June 2013, pp. 1–5 (2013)

    Google Scholar 

  12. Gardner, A.D., Potgieter, J., Noble, F.K.: A review of commercially available exoskeletons’ capabilities. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), November 2017, pp. 1–5 (2017)

    Google Scholar 

  13. Bernhardt, M., Frey, M., Colombo, G., Riener, R.: Hybrid force-position control yields cooperative behaviour of the rehabilitation robot lokomat. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, June 2005, pp. 536–539 (2005)

    Google Scholar 

  14. Drillis, R., Contini, R., Bluestein, M.: Body Segment Parameters. New York University, School of Engineering and Science Research Division, NY (1966)

    Google Scholar 

  15. Sulca, R.: Da mundial de la talla baja: los peruanos ahora son ms altos? http://vital.rpp.pe/expertos/dia-mundial-de-la-talla-baja-subio-talla-promedio-de-peruanos-noticia-907951#section-comment. Accessed 12 June 2017. RPP vital, October 2015

  16. Cossio-Bolaos, M., Figueroa, P., Cossio-Bolaos, W., Lzari, E., Arruda, M.: Parmetros del crecimiento fsico de nios que viven a moderada altitud. Revista Medica Herediana, vol. 23, pp. 96–105. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2012000200004&nrm=iso, April 2012

  17. Marrero, R., Rull, I.: Biomecnica clnica de las patologas del aparato locomotor Masson. https://books.google.com.br/books?id=bBZyst1al68C (2006)

  18. Nordin, M., Frankel, V.H., Forssén, K.: Biomecánica básica del sistema musculoesquelético. McGraw-Hill. Interamericana (2004)

    Google Scholar 

  19. Zhang, D., Zhao, X., Han, J.: Active modeling for pneumatic artificial muscle. In: 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), April 2016, pp. 44–50 (2016)

    Google Scholar 

  20. Kanda Tsushin Kogyo pneumatic artificial muscle datasheet. http://www.kanda.co.jp/jp/examples/medical/muscle/air-muscle.pdf. Accessed 10 June 2017

  21. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley (2009)

    Google Scholar 

  22. Shigley, J.E.: Shigley’s Mechanical Engineering Design. Tata McGraw-Hill Education (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Villena Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villena Prado, G., Yli-Peltola, R., Castro Sanchez, M.B. (2019). Design and Analysis of a Lower Limb Exoskeleton for Rehabilitation. In: Kecskeméthy, A., Geu Flores, F., Carrera, E., Elias, D. (eds) Interdisciplinary Applications of Kinematics. Mechanisms and Machine Science, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-030-16423-2_10

Download citation

Publish with us

Policies and ethics