Skip to main content

Optimal Lap Time for a Race Car: A Planar Multibody Dynamics Approach

  • Conference paper
  • First Online:
Interdisciplinary Applications of Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 71))

Abstract

The optimal lap time for a race vehicle in a race track represents the minimum possible time for a vehicle to negotiate a complete round about the racetrack. In this work, a 2D multibody dynamic analysis program is developed to allow modelling and simulating the vehicle and racetrack scenario by implementing all the necessary kinematic constraints, which includes a steering constraint for a 4-wheel vehicle with a front steering axle and the necessary force elements including traction and braking and tyre-road contact. A trajectory optimization, on a given track with a prescribed geometry, which is obtained by a mix of the shortest and the least curvature paths with a speed profile optimized within limits for the longitudinal and lateral vehicle accelerations. A controller is developed to enforce that the vehicle follows the optimal path and the speed profile. This controller uses a preview distance, which allows for the vehicle to find its way even when it starts or goes off-track. The controller and the dynamic analysis program are demonstrated in a scenario in which the behavior of a race car in a realistic racetrack is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrósio, J., Gonçalves, J.: Complex flexible multibody systems with application to vehicle dynamics. Multibody Sys. Dyn. 6, 163–182 (2001)

    Article  MathSciNet  Google Scholar 

  2. Antos, P., Ambrósio, J.: A control strategy for vehicle trajectory tracking using multibody models. Multibody Sys. Dyn. 11, 365–394 (2004)

    Article  Google Scholar 

  3. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  4. Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic numeric indirect method for solving optimal control problems for large multibody systems: the time-optimal racing vehicle example. Multibody Sys. Dyn. 13(2), 233–252 (2005)

    Article  Google Scholar 

  5. Bertolazzi, E., Biral, F., Da Lio, M.: Real time motion planning for multibody systems: real life application examples. Multibody Sys. Dyn. 17(2–3), 119–139 (2007)

    Article  MathSciNet  Google Scholar 

  6. Braghin, F., Cheli, F., Melzi, S., Sabbioni, E.: Race driver model. Comput. Struct. 86(13–14), 1503–1516 (2008)

    Article  Google Scholar 

  7. Cardamone, L., Loiacono, D., Lanzi, P., Bardelli, A.: Searching for the optimal racing line using genetic algorithms. In: Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, 18–21 Aug., Copenhagen, Denmark, pp. 388–394 (2010)

    Google Scholar 

  8. Fiala, E.: Seitenkräfte am rollenden Luftreifen. VDI Zeitschrift, 96 (1954)

    Google Scholar 

  9. Genta, G., Morello, L.: The Automotive Chassis-Volume 1: Components Design. Springer, Heidelberg (2009)

    Google Scholar 

  10. Gim, G., Nikravesh, P.E.: Analytical model of pneumatic tyres for vehicle dynamic simulations—Part 1: pure slips. Int. J. Veh. Des. 11(6), 589–618 (1990)

    Google Scholar 

  11. Jazar, R.N.: Vehicle Dynamics: Theory and Applications. Springer, New York (2008)

    Book  Google Scholar 

  12. Lot, R., Bianco, N.: Lap time optimisation of a racing go-kart. Veh. Syst. Dyn. 54(2), 210–230 (2016)

    Article  Google Scholar 

  13. Marques, L.: Optimal lap time for a race vehicle. M.Sc. thesis, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal (2016)

    Google Scholar 

  14. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood-Cliffs, New Jersey (1988)

    Google Scholar 

  15. Otto, S., Seifried, R.: Real-time trajectory control of an overhead crane using servo-constraints. Multibody Sys. Dyn. 42(1), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  16. Pacejka, H.B.: Tyre and Vehicle Dynamics, 2nd edn. Butterworth-Heinemann, Burlington, Massachussetts (2006)

    Google Scholar 

  17. Sharp, R.S.: Optimal preview speed-tracking control for motorcycles. Multibody Syst. Dyn. 18(3), 397–411 (2007)

    Article  Google Scholar 

  18. Sharp, R.S.: A method for predicting minimum-time capability of a motorcycle on a racing circuit. J. Dyn. Syst. Meas. Contr. 136(4), 0410072014 (2014)

    Article  Google Scholar 

  19. Thommyppillai, M., Evangelou, S., Sharp, R.S.: Advances in the development of a virtual car driver. Multibody Sys. Dyn. 22(3), 245–267 (2009)

    Article  Google Scholar 

  20. Thommyppillai, M., Evangelou, S., Sharp, R.S.: Car driving at the limit by adaptive linear optimal preview control. Veh. Syst. Dyn. 47(12), 1535–1550 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ambrósio .

Editor information

Editors and Affiliations

Appendices

Appendix 1.1: Pacejka Magic Formula Parameters

The Pacekja Magic Formula coefficients appearing in Eqs. (1.5) through (1.10) need to be evaluated based on the tyre specific data. The normalized vertical load increment, dfz, calculated as

$$ df_{z} = \left( {f_{z} - f_{z0}^{{\prime }} } \right)/f_{z0}^{{\prime }} $$
(1.20)

For the longitudinal force, in pure slip conditions, evaluate the parameters:

$$ \begin{aligned} \mu_{x} & = \left( {p_{Dx1} + p_{Dx2} \,df_{z} } \right)\uplambda_{\mu x}^{*} \\ K_{x} & = f_{z} \,\left( {p_{Kx1} + p_{Kx2} \,df_{z} } \right)\exp \left( {p_{Kx3} \,df_{z} } \right)\,\uplambda_{Kx} \\ C_{x} & = p_{Cx1} \,\uplambda_{Cx} \\ D_{x} & = \mu_{x} \,f_{z} \,\zeta_{1} \\ B_{x} & = {{K_{x} } \mathord{\left/ {\vphantom {{K_{x} } {\left( {C_{x} D_{x} } \right)}}} \right. \kern-0pt} {\left( {C_{x} D_{x} } \right)}} \\ E_{x} & = \left( {p_{Ex1} + p_{Ex2} \,df_{z} + p_{Ex3} \,df_{z}^{2} } \right)\left( {1 - p_{Ex4} \,\text{sgn} s_{x} } \right)\uplambda_{Ex} \\ S_{Hx} & = \left( {p_{Hx1} + p_{Hx2} \,df_{z} } \right)\uplambda_{Hx}^{{}} \\ S_{Vx} & = f_{z} \left( {p_{Vx1} + p_{Vx2} \,df_{z} } \right)\uplambda_{Vx}^{{}} \,\uplambda_{\mu x}^{{\prime }} \,\zeta_{1} \\ \end{aligned} $$
(1.21)

For the lateral force, in pure slip conditions, evaluate the parameters:

$$ \begin{aligned} \mu_{y} & = \left( {p_{Dy1} + p_{Dy2} \,df_{z} } \right)\uplambda_{\mu y}^{*} \\ K_{y} & = p_{Ky1} \,f^{\prime}_{z0} \,\,\sin \left[ {p_{Ky4} \arctan \left( {{{f_{z} } \mathord{\left/ {\vphantom {{f_{z} } {\left( {p_{Ky2} \,f^{\prime}_{z0} } \right)}}} \right. \kern-0pt} {\left( {p_{Ky2} \,f^{\prime}_{z0} } \right)}}} \right)} \right]\uplambda_{Ky\alpha } \,\zeta_{3} \\ C_{y} & = p_{Cy1} \,\uplambda_{Cy} \\ D_{y} & = \mu_{y} \,f_{z} \,\zeta_{2} \\ B_{y} & = {{K_{y} } \mathord{\left/ {\vphantom {{K_{y} } {\left( {C_{y} D_{y} } \right)}}} \right. \kern-0pt} {\left( {C_{y} D_{y} } \right)}}\, \\ E_{y} & = \left( {p_{Ey1} + p_{Ey2} \,df_{z} } \right)\left( {1 - p_{Ey3} \,\text{sgn} \alpha_{y} } \right)\uplambda_{Ey} \\ S_{Hy} & = \left( {p_{Hy1} + p_{Hy2} \,df_{z} } \right)\uplambda_{Hy}^{{}} + \zeta_{4} - 1 \\ S_{Vy} & = f_{z} \left( {p_{Vy1} + p_{Vy2} \,df_{z} } \right)\uplambda_{Vy}^{{}} \,\uplambda_{\mu y}^{{\prime }} \,\zeta_{4} \\ \end{aligned} $$
(1.22)

For the aligning torque, in pure slip conditions, evaluate the parameters:

$$ \begin{aligned} C_{r} & = \zeta_{7} \\ D_{r} & = f_{z} \,\left( {q_{Dz6} + q_{Dz7} \,df_{z} } \right)R_{0} \,\uplambda_{r} \, + \zeta_{8} \, - 1 \\ B_{r} & = \left( {{{q_{Bz9} \,\uplambda_{Ky} } \mathord{\left/ {\vphantom {{q_{Bz9} \,\uplambda_{Ky} } {\uplambda_{\mu y} }}} \right. \kern-0pt} {\uplambda_{\mu y} }} + q_{Bz10} \,B_{y} C_{y} } \right)\zeta_{6} \\ C_{t} & = q_{Cz1} \\ D_{t} & = f_{z} \left( {q_{Dz1} + q_{Dz2} \,df_{z} } \right){{R_{0} \,\uplambda_{t} \,\zeta_{5} } \mathord{\left/ {\vphantom {{R_{0} \,\uplambda_{t} \,\zeta_{5} } {f^{\prime}_{z0} }}} \right. \kern-0pt} {f^{\prime}_{z0} }} \\ B_{t} & = \left( {q_{Bz1} + q_{Bz2} \,df_{z} + q_{Bz3} \,df_{z}^{2} } \right){{\uplambda_{Ky} } \mathord{\left/ {\vphantom {{\uplambda_{Ky} } {\uplambda_{\mu y} }}} \right. \kern-0pt} {\uplambda_{\mu y} }} \\ E_{t} & = \left( {q_{Ez1} + q_{Ez2} \,df_{z} + q_{Ez3} \,df_{z}^{2} } \right)\left[ {1 + \tfrac{2}{\pi }\,q_{Ez4} \,\arctan \left( {B_{t} C_{t} \,\alpha_{t} } \right)} \right] \\ S_{Ht} & = q_{Hz1} + q_{Hz2} \,df_{z} \\ S_{Hf} & = S_{Hy} + {{S_{Vy} } \mathord{\left/ {\vphantom {{S_{Vy} } {K_{y} }}} \right. \kern-0pt} {K_{y} }} \\ \end{aligned} $$
(1.23)

For the longitudinal force, in combined slip conditions, evaluate the parameters:

$$ \begin{aligned} B_{x\alpha } & = r_{Bx1} \,\cos \left[ {\arctan \left( {r_{Bx2} \,s} \right)} \right]\uplambda_{x\alpha } \\ C_{x\alpha } & = r_{Cx1} \\ E_{x\alpha } & = r_{Ex1} + r_{Ex2} \,df_{z} \\ S_{Hx\alpha } & = r_{Hx1} \\ G_{x\alpha 0} & = \cos \left\{ {C_{x\alpha } \arctan \left[ {B_{x\alpha } S_{Hx\alpha } - E_{x\alpha } \left( {B_{x\alpha } S_{Hx\alpha } - \arctan (B_{x\alpha } S_{Hx\alpha } )} \right)} \right]} \right\} \\ G_{x\alpha } & = {{\cos \left\{ {C_{x\alpha } \arctan \left[ {B_{x\alpha } \alpha_{s} - E_{x\alpha } \left( {B_{x\alpha } \alpha_{s} - \arctan (B_{x\alpha } \alpha_{s} )} \right)} \right]} \right\}} \mathord{\left/ {\vphantom {{\cos \left\{ {C_{x\alpha } \arctan \left[ {B_{x\alpha } \alpha_{s} - E_{x\alpha } \left( {B_{x\alpha } \alpha_{s} - \arctan (B_{x\alpha } \alpha_{s} )} \right)} \right]} \right\}} {G_{x\alpha 0} }}} \right. \kern-0pt} {G_{x\alpha 0} }} \\ \end{aligned} $$
(1.24)

For the lateral force, in combined slip conditions, evaluate the parameters:

$$ \begin{aligned} B_{ys} & = r_{By1} \,\cos \left[ {\arctan \left( {r_{By2} \left( {\alpha - r_{By3} } \right)} \right)} \right]\uplambda_{ys} \\ C_{ys} & = r_{Cy1} \\ E_{ys} & = r_{Ey1} + r_{Ey2} \,df_{z} \\ D_{Vys} & = \mu_{y} \,f_{z\,} \,\left( {r_{Vy1} + r_{Vy2} \,df_{z} } \right)\cos \left[ {\arctan \left( {r_{Vy4} \,\alpha } \right)} \right]\zeta_{2} \\ S_{Hys} & = r_{Hy1} + r_{Hy2} \,df_{z} \, \\ S_{Vys} & = D_{Vys} \,\sin \left[ {r_{Vy5} \arctan \left( {r_{Vy6} \,s} \right)} \right]\uplambda_{Vys} \\ s_{s} & = s + S_{Hys} \\ G_{ys0} & = \cos \left\{ {C_{ys} \arctan \left[ {B_{ys} S_{Hys} - E_{ys} \left( {B_{ys} S_{Hys} - \arctan (B_{ys} S_{Hys} )} \right)} \right]} \right\} \\ G_{ys} & = {{\cos \left\{ {C_{ys} \arctan \left[ {B_{ys} s_{s} - E_{ys} \left( {B_{ys} s_{s} - \arctan (B_{ys} s_{s} )} \right)} \right]} \right\}} \mathord{\left/ {\vphantom {{\cos \left\{ {C_{ys} \arctan \left[ {B_{ys} s_{s} - E_{ys} \left( {B_{ys} s_{s} - \arctan (B_{ys} s_{s} )} \right)} \right]} \right\}} {G_{ys0} }}} \right. \kern-0pt} {G_{ys0} }} \\ \end{aligned} $$
(1.25)

In the current use of the Pacejka Magic Formula it is assumed that the camber angle of the tyre is null and that the spin has small values. Consequently the turn-slip and parking parameters are ζi = 1, i = 1,…,8. It is also assumed that no modification of the tires properties are used and, consequently, the scaling factors for pure slip are all unitary, i.e., all λ = 1.

Appendix 1.2: Hoosier Slick Racing Tyre Coefficients

See Tables 1.4, 1.5.

Table 1.4 Basic Hoosier slick tire parameters
Table 1.5 Tyre force coefficients for Hoosier slick racing tyre

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambrósio, J., Marques, L. (2019). Optimal Lap Time for a Race Car: A Planar Multibody Dynamics Approach. In: Kecskeméthy, A., Geu Flores, F., Carrera, E., Elias, D. (eds) Interdisciplinary Applications of Kinematics. Mechanisms and Machine Science, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-030-16423-2_1

Download citation

Publish with us

Policies and ethics