Skip to main content

Microbial Nanobionics: Application of Nanobiosensors in Microbial Growth and Diagnostics

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Microbial nanobiosensors (NBSs) contain immobilized microorganisms and a chain of transduction and are generally used for a single biochemical process. There are two classes of microbial NBSs that use the same principle for measuring the activity of metabolism in the presence of the analyte. The NBSs using immobilized microorganisms from which the products resulting from metabolism are measured are known as microbial NBSs. NBSs that measure the electrical activity of the metabolism of microorganisms when consuming a “biofuel” are generally known as bioelectrochemical cells or biofuel cells. The advantages of microbial NBSs are lower sensitivity to inhibition and contamination of the substrate; higher tolerance to pH and temperature variations; higher lifetime compared to the enzymatic ones; cheap; high variability, because they are able to adapt better to environmental conditions; cofactor independence; physiological response to toxic compounds; and ease of preparation due to the easy cultivation of microorganisms. The disadvantages of NBSs are as follows: they have a longer response time than enzymatic electrodes; and reusing them in a new measurement requires a longer time. Photomicrobial NBSs are based on the optical phenomena manifested by microorganisms in metabolic processes: photoluminescence, chemiluminescence, electroluminescence, polarization, absorbance, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2010) Screen–printed biosensors in microbiology: a review. Talanta 82(5):1629–1636

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Park B (2016) Recent advancements in nanobioassays and nanobiosensors for foodborne pathogenic bacteria detection. J Food Prot 79(6):1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Cheng MS, Lau SH, Chow VT, Toh CS (2011) Membrane–based electrochemical nanobiosensor for Escherichia coli detection and analysis of cells viability. Environ Sci Technol 45(15):6453–6459

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Lee DY, Lim WK, Shin HJ (2014) A recombinant Escherichia coli biosensor for detecting polycyclic aromatic hydrocarbons in gas and aqueous phases. Prep Biochem Biotechnol 44(8):849–860

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Lee Y, Han I, Kim H, Goo E, Kim J, Hwang I (2013) A simple and sensitive biosensor strain for detecting toxoflavin using β–galactosidase activity. Biosens Bioelectron 50:256–261

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Article  PubMed  Google Scholar 

  • Espinosa-Urgel M, Serrano L, Ramos JL, Fernández–Escamilla AM (2015) Engineering Biological Approaches for Detection of Toxic Compounds: a New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor. Mol Biotechnol 57(6):558–564

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Qian J, Fang D, Yu Y, Zhi J (2016) Development of a mediated whole cell–based electrochemical biosensor for joint toxicity assessment of multi–pollutants using a mixed microbial consortium. Anal Chim Acta 924:21–28

    Article  CAS  PubMed  Google Scholar 

  • Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 97(10):4259–4275

    Article  CAS  PubMed  Google Scholar 

  • Gredell JA, Frei CS, Cirino PC (2012) Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 7(4):477–499

    Article  CAS  PubMed  Google Scholar 

  • Hou QH, Ma AZ, Zhuang XL, Zhuang GQ (2013) Construction and properties of a microbial whole–cell sensor CB10 for the bioavailability detection of Cr6+. Environ Sci 34(3):1181–1189

    CAS  Google Scholar 

  • Hsieh MC, Chung YC (2014) Measurement of biochemical oxygen demand from different wastewater samples using a mediator–less microbial fuel cell biosensor. Environ Technol 35(17–20):2204–2211

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Angelidaki I, Zhang Y (2016) Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion. Environ Sci Technol 50(8):4422–4429

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Kim JR, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2013) Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens Bioelectron 47:50–55

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, D’Souza SF (2010) An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosens Bioelectron 26(4):1292–1296

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, D’Souza SF (2011) Immobilization of microbial cells on inner epidermis of onion bulb scale for biosensor application. Biosens Bioelectron 26(11):4399–4404

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J, Zhang S, Xing XH, Su Z (2011) Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour Technol 102(22):10221–10229

    Article  CAS  PubMed  Google Scholar 

  • Lu TK, Bowers J, Koeris MS (2013) Advancing bacteriophage–based microbial diagnostics with synthetic biology. Trends Biotechnol 31(6):325–327

    Article  CAS  PubMed  Google Scholar 

  • Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor–driven adaptive laboratory evolution of l–valine production in Corynebacterium glutamicum. Metab Eng 32:184–194

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani A, Rajesh R (2011) Microbial biosensors for organophosphate pesticides. Appl Biochem Biotechnol 165(2):687–699

    Article  CAS  PubMed  Google Scholar 

  • Nigam VK, Shukla P (2015) Enzyme based biosensors for detection of environmental pollutants: a review. J Microbiol Biotechnol 25(11):1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sens (Basel) 13(5):5777–5795

    Article  CAS  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaie M, Mohsenifar A (2012) Development of high–throughput quantum dot biosensor against Polymyxa species. Commun Agric Appl Biol Sci 77(3):7–13

    CAS  PubMed  Google Scholar 

  • Saikia SK, Gupta R, Pant A, Pandey R (2014) Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor. J Expo Sci Environ Epidemiol 24(2):180–184

    Article  CAS  PubMed  Google Scholar 

  • Schallmey M, Frunzke J, Eggeling L, Marienhagen J (2014) Looking for the pick of the bunch: high–throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154

    Article  CAS  PubMed  Google Scholar 

  • Schenkmayerová A, Bučko M, Gemeiner P, Katrlík J (2013) Microbial monooxygenase amperometric biosensor for monitoring of Baeyer–Villiger biotransformation. Biosens Bioelectron 50:235–238

    Article  PubMed  CAS  Google Scholar 

  • Schenkmayerová A, Bertóková A, Sefčovičová J, Stefuca V, Bučko M, Vikartovská A, Gemeiner P, Tkáč J, Katrlík J (2015) Whole–cell Gluconobacter oxydans biosensor for 2–phenylethanol biooxidation monitoring. Anal Chim Acta 854:140–144

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Kovács T, Rákhely G, Czeller M (2016) Biosensoric potential of microbial fuel cells. Appl Microbiol Biotechnol 100(16):7001–7019

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ (2010) Development of highly–sensitive microbial biosensors by mutation of the nahR regulatory gene. J Biotechnol 150(2):246–250

    Article  CAS  PubMed  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    Article  CAS  PubMed  Google Scholar 

  • Sun JZ, Peter Kingori G, Si RW, Zhai DD, Liao ZH, Sun DZ, Zheng T, Yong YC (2015) Microbial fuel cell–based biosensors for environmental monitoring: a review. Water Sci Technol 71(6):801–809

    Article  CAS  PubMed  Google Scholar 

  • Tepper N, Shlomi T (2011) Computational design of auxotrophy–dependent microbial biosensors for combinatorial metabolic engineering experiments. PLoS One 6(1):e16274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virolainen N, Karp M (2014) Biosensors, antibiotics and food. Adv Biochem Eng Biotechnol 145:153–185

    CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100(6):2555–2566

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu M, Wang X, Wu Z, Yang L, Xia S, Chen L, Zhao J (2013) p–Benzoquinone–mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens Bioelectron 41:557–562

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zheng Y, Jia H, Zhang H (2014) Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: effects of operation parameters performing a microbial fuel cell–based biosensor for tubular membrane bioreactor. Bioresour Technol 170:483–490

    Article  CAS  PubMed  Google Scholar 

  • Weising K, Kahl G (1996) Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 12(4):327–351

    Article  CAS  PubMed  Google Scholar 

  • Williams TC, Pretorius IS, Paulsen IT (2016) Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol 34(5):371–381

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhou M, Liu M, Yang W, Gu T (2015) Microbial fuel cells for biosensor applications. Biotechnol Lett 37(12):2357–2364

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19(7):323–329

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butnariu, M., Butu, A. (2019). Microbial Nanobionics: Application of Nanobiosensors in Microbial Growth and Diagnostics. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_9

Download citation

Publish with us

Policies and ethics