Skip to main content

Microbial Nanobionic Engineering: Translational and Transgressive Science of an Antidisciplinary Approximation

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Combining in a single space microbiology, nanotechnology, synthetic biology, and biosensors requires a different approach to those used so far. First of all, you need to defeat the walls between the disciplines, in which the correct study of the interaction of nanomaterials with biological systems (microbial networks in this case) provide the information that will make it possible to develop novel applications. In this way, the description of biochemical pathways that produce small-molecule antibiotics and anticancer agents can be great platforms for the use of models of synthetic biology with which to design new organisms useful in biotechnology. Also, in this interesting world of bio-nano-things where reuse and reengineering of biological cells are possible, current pharmacological capabilities, in addition to procedures for the treatment, control, and prevention of diseases can be increased. Additionally, coupled with microfluidics in miniaturized devices, this promises to change all screening platforms used so far, where these engineered microorganisms can be used extensively to obtain on-site analysis. Likewise, it is fascinating to contemplate the alternative of designing factories of nanomaterials using this integrative discipline for groups and cellular associations. But just as important as the study and fusion of new disciplines, it is important to follow the postulate of biomimicry, in which the elements of nature serve as inspiration for the solution of problems with applications in medicine and engineering, with the wide possibility that this great innovative potential can be applied to new enterprises.

It is thus under the mantle of bioinspiration that this chapter seeks to develop a translational approach in which several disciplines converge to obtain products and services that transcend from basic science to the development of promising applications in industry.

“Life did not take over the world by combat, but by networking.”

—Lynn Margulis (1938–2011), Microcosmos: Four Billion Years of Microbial Evolution

“It necessarily follows that chance alone is at the source of every innovation, and of all creation in the biosphere. Pure chance, absolutely free but blind, at the very root of the stupendous edifice of evolution: this central concept of modern biology is no longer one among many other possible or even conceivable hypotheses. It is today the sole conceivable hypothesis, the only one that squares with observed and tested fact. And nothing warrants the supposition – or the hope – that on this score our position is ever likely to be revised. There is no scientific concept, in any of the sciences, more destructive of anthropocentrism than this one.”

—Jacques Monod (1910–1976), Chance and Necessity

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi QH, Yang K, Chopra N, Jornet JM, Abuali NA, Qaraqe KA, Alomainy A (2016) Nano-communication for biomedical applications: a review on the state-of-the-art from physical layers to novel networking concepts. IEEE Access 4:3920–3935

    Article  Google Scholar 

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics (eds. Prasad R, Kumar V, Kumar M, and Shanquan W), Springer Nature Singapore Pte Ltd. 61–87

    Google Scholar 

  • Abo-El-Enein SA, Ali AH, Talkhan FN, Abdel-Gawwad HA (2013) Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC J 9:36–40

    Article  Google Scholar 

  • Ahn J, Ko J, Lee S, Yu J, Kim Y, Jeon NL (2018) Microfluidics in nanoparticle drug delivery; from synthesis to pre-clinical screening. Adv Drug Deliv Rev 128:29–53

    Article  CAS  PubMed  Google Scholar 

  • Akan OB, Ramezani H, Khan T, Abbasi NA, Kuscu M (2017) Fundamentals of molecular information and communication science. Proc IEEE 105:306–318

    Article  Google Scholar 

  • Ali J, Cheang UK, Martindale JD, Jabbarzadeh M, Fu HC, Kim MJ (2017) Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Sci Rep 7:14098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Audette GF, Lombardo S, Dudzik J, Arruda TM, Kolinski M, Filipek S, Mukerjee S, Kannan AM, Thavasi V, Ramakrishna S, Chin M, Somasundaran P, Viswanathan S, Keles RS, Renugopalakrishnan V (2011) Protein hot spots at bio-nano interfaces. Mater Today 14:360–365

    Article  CAS  Google Scholar 

  • Ayangbenro A, Babalola O (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012) Electrochemically active biofilms: facts and fiction. A review. Biofouling 28:789–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthlott W, Rafiqpoor MD, Erdelen WR (2016) Bionics and biodiversity-bio-inspired technical innovation for a sustainable future. In: Knippers J, Nickel K, Speck T (eds) Biomimetic research for architecture and building construction. Springer International Publishing, Cham, pp 11–55

    Chapter  Google Scholar 

  • Bereza-Malcolm LT, Franks AE (2015) Coupling anaerobic bacteria and microbial fuel cells as whole-cell environmental biosensors. Microbiol Aust 36:129–132

    Google Scholar 

  • Blin K, Medema MH, Kottmann R, Lee SY, Weber T (2016) The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 45:D555–D559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blok V, Gremmen B (2016) Ecological innovation: biomimicry as a new way of thinking and acting ecologically. J Agric Environ Ethics 29:203–217

    Article  Google Scholar 

  • Bonanni B, Alliata D, Andolfi L, Bizzarri AR, Delfino I, Cannistraro S (2004) Yeast cytochrome on gold electrode: a robust hybrid system for bio-nanodevices. In: Nanotechnology 4th IEEE conference, 574–576

    Google Scholar 

  • Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z (2017) Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. J Fungi (Basel) 3:46

    Article  CAS  Google Scholar 

  • Bosi E, Bacci G, Mengoni A, Fondi M (2017) Perspectives and challenges in microbial communities metabolic modeling. Front Genet 8:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyle PM, Silver PA (2012) Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 14:223–232

    Article  CAS  PubMed  Google Scholar 

  • Bueno J (2018a) Looking for the integrome, When metabolomics talk about the interactome. J Microb Biochem Technol 10:e134

    Google Scholar 

  • Bueno J (2018b) Biofilm environmentome: A survival experiment. J Biochem Physiol 1:1

    Google Scholar 

  • Calignano F, Tommasi T, Manfredi D, Chiolerio A (2015) Additive manufacturing of a microbial fuel cell-a detailed study. Sci Rep 5:17373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerminati S, Soncini FC, Checa SK (2015) A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions. Chem Commun (Camb) 51:5917–5920

    Article  CAS  Google Scholar 

  • Chiu DT, Di Carlo D, Doyle PS, Hansen C, Maceiczyk RM, Wootton RC (2017) Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2:201–223

    Article  CAS  Google Scholar 

  • Chude-Okonkwo UA, Malekian R, Maharaj BT, Chude CC (2015) Bio-inspired approach for eliminating redundant nanodevices in internet of bio-nano things. In: IEEE Globecom Workshops (GC Wkshps), 1–6

    Google Scholar 

  • Cobo LC, Akyildiz IF (2010) Bacteria-based communication in nanonetworks. Nano Commun Networks 1:244–256

    Article  Google Scholar 

  • Cui J, Zhu N, Kang N, Ha C, Shi C, Wu P (2017) Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: from biosorption to bioreduction. Chem Eng J 328:1051–1057

    Article  CAS  Google Scholar 

  • Dahoumane SA, Mechouet M, Wijesekera K, Filipe CD, Sicard C, Bazylinski DA, Jeffryes C (2017) Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review. Green Chem 19:552–587

    Article  CAS  Google Scholar 

  • De Castro AP, Franco OL (2015) Modifying natural antimicrobial peptides to generate bioinspired antibiotics and devices. Future Med Chem 7:413–415

    Article  PubMed  CAS  Google Scholar 

  • De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16:1472–1481

    Article  PubMed  Google Scholar 

  • Deniz I, Keskin-Gundogdu T (2018) Biomimetic design for a bioengineered world. In: Kokturk G (ed) Interdisciplinary expansions in engineering and design with the power of biomimicry. IntechOpen Limited, London, pp 57–74

    Google Scholar 

  • Densmore D, Hassoun S (2012) Design automation for synthetic biological systems. IEEE Des Test Comput 29:7–20

    Article  Google Scholar 

  • Dicks H (2017) The poetics of biomimicry: the contribution of poetic concepts to philosophical inquiry into the biomimetic principle of nature as model. Environ Philos 14:191–219

    Article  Google Scholar 

  • Ebrahiminezhad A, Bagheri M, Taghizadeh SM, Berenjian A, Ghasemi Y (2016) Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol 7:015018

    Article  Google Scholar 

  • El-Din HE, Manjaiah DH (2017) Internet of nano things and industrial internet of things. In: Acharjya DP, Geetha MK (eds) Internet of things: novel advances and envisioned applications. Springer International Publishing, Cham, pp 109–123

    Chapter  Google Scholar 

  • Ergene C, Yasuhara K, Palermo EF (2018) Biomimetic antimicrobial polymers: recent advances in molecular design. Polym Chem 9:2407–2427

    Article  CAS  Google Scholar 

  • Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraz M, Abbasi A, Naqvi FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors Actuators A 269:195–202. https://doi.org/10.1016/j.snb.2018.04.110

    Article  CAS  Google Scholar 

  • Felicetti L, Femminella M, Reali G, Liò P (2016) Applications of molecular communications to medicine: a survey. Nano Commun Networks 7:27–45

    Article  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11:20140065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TB, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001

    Article  PubMed  CAS  Google Scholar 

  • Großkopf T, Soyer OS (2014) Synthetic microbial communities. Curr Opin Microbiol 18:72–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez JC, Amaro F, Martín-González A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:48

    PubMed  PubMed Central  Google Scholar 

  • Guzmán-Trampe S, Ceapa CD, Manzo-Ruiz M, Sánchez S (2017) Synthetic biology era: improving antibiotic’s world. Biochem Pharmacol 134:99–113

    Article  PubMed  CAS  Google Scholar 

  • Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA (2014) Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 111:1471–1482

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Hossain E, Balasubramaniam S, Koucheryavy Y (2015) Social behavior in bacterial nanonetworks: challenges and opportunities. IEEE Netw 29:26–34

    Article  Google Scholar 

  • Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 36:40–49

    Article  CAS  PubMed  Google Scholar 

  • He W, Yuan S, Zhong WH, Siddikee MA, Dai CC (2016) Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 100:1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Seo J, Willingham SB, Czyzewski AM, Gonzalgo ML, Weissman IL, Barron AE (2014) Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity. PLoS One 9:e90397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44:6330–6374

    Article  CAS  PubMed  Google Scholar 

  • Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164

    Article  CAS  PubMed  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes – a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  • Hunter P (2017) From imitation to inspiration: biomimicry experiences a revival driven by a more systematic approach to explore nature’s inventions for human use. EMBO Rep 18:363–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igor M, Khaustova V (2015) Modern trends on bioeconomy development in the world: the introduction of NBIC-technologies in biomedicine. Int J Br 2:103–118

    Google Scholar 

  • Iouguina A, Dawson J, Hallgrimsson B, Smart G (2014) Biologically informed disciplines: a comparative analysis of bionics, biomimetics, biomimicry, and bio-inspiration among others. Int J Des Nat Ecodyn 9:197–205

    Article  Google Scholar 

  • Jacobs S (2014) Biomimetics: a simple foundation will lead to new insight about process. Int J Des Nat Ecodyn 9:83–94

    Article  Google Scholar 

  • Jang SS, Oishi KT, Egbert RG, Klavins E (2012) Specification and simulation of synthetic multicelled behaviors. ACS Synth Biol 1:365–374

    Article  CAS  PubMed  Google Scholar 

  • Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson I, Prabu HJ (2015) Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett 5:43–51

    Article  CAS  Google Scholar 

  • Kennedy B, James JKN (2015) Integrating biology, design, and engineering for sustainable innovation. In: Integrated STEM Education Conference (ISEC), 88–93

    Google Scholar 

  • Kennedy E, Fecheyr-Lippens D, Hsiung BK, Niewiarowski PH, Kolodziej M (2015) Biomimicry: a path to sustainable innovation. Des Issues 31:66–73

    Article  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8:904–917

    Article  CAS  PubMed  Google Scholar 

  • Kobras CM, Mascher T, Gebhard S (2017) Application of a Bacillus subtilis whole-cell biosensor (Plial-lux) for the identification of cell wall active antibacterial compounds. Methods Mol Biol 1520:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kubo AM, Gorup LF, Amaral LS, Filho ER, Camargo ER (2016) Kinetic control of microtubule morphology obtained by assembling gold nanoparticles on living fungal biotemplates. Bioconjug Chem 27:2337–2345

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Seo HH, Lee TK, Kim HC, Kim T, Park SH, Lee MH, Moh SH (2014) Photoresponse of silicon nanowire array field effect transistors controlled by mycosporine-like amino acids. J Nanoeng Nanomanufact 4:247–251

    Article  CAS  Google Scholar 

  • Kuscu M, Akan OB (2018) Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things. PLoS One 13:e0192202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li N, Huang X, Zou J, Chen G, Liu G, Li M, Dong J, Du F, Cui X, Tang Z (2018) Evolution of microbial biosensor based on functional RNA through fluorescence-activated cell sorting. Sensors Actuators B Chem 258:550–557

    Article  CAS  Google Scholar 

  • Lin N, Jing S, Liang X, Yuan W, Chen H (2015) Biomimicry of symbiotic multi-species coevolution for global optimization. Metall Min Indust 7:187–194

    Google Scholar 

  • Lin N, Chen H, Jing S, Liu F, Liang X (2017) Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks. Saudi J Biol Sci 24:610–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Little AE, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gill E, Shery Huang YY (2017) Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Sci OA 3:FSO173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löffler S, Libberton B, Richter-Dahlfors A (2015a) Organic bioelectronic tools for biomedical applications. Electronics 4:879–908

    Article  CAS  Google Scholar 

  • Löffler S, Libberton B, Richter-Dahlfors A (2015b) Organic bioelectronics in infection. J Mater Chem B 3:4979–4992

    Article  CAS  Google Scholar 

  • Löffler S, Melican K, Nilsson KPR, Richter-Dahlfors A (2017) Organic bioelectronics in medicine. J Intern Med 282:24–36

    Article  PubMed  CAS  Google Scholar 

  • Lotfi NG (2017) Evolutionary design: the application of biological strategies in the product design process. Int J Des Nat Ecod 12:204–213

    Article  Google Scholar 

  • Ma X, Zhang S, Jiao F, Newcomb CJ, Zhang Y, Prakash A, Liao Z, Baer MD, Mundy CJ, Pfaendtner J, Noy A, Chen CL, De Yoreo JJ (2017) Tuning crystallization pathways through sequence engineering of biomimetic polymers. Nat Mater 16:767–775

    Article  CAS  PubMed  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2016) Microbial fuel cells – applications for generation of electrical power and beyond. Crit Rev Microbiol 42:127–143

    Article  CAS  PubMed  Google Scholar 

  • Mazzocchi F (2008) Complexity in biology: exceeding the limits of reductionism and determinism using complexity theory. EMBO Rep 9:10–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor SL (2013) Transdisciplinarity and biomimicry. Transd J Eng Sci 4:57–65

    Google Scholar 

  • Misirli G, Hallinan JS, Yu T, Lawson JR, Wimalaratne SM, Cooling MT, Wipat A (2011) Model annotation for synthetic biology: automating model to nucleotide sequence conversion. Bioinformatics 27:973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59:4112–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujah D, Shahin MA, Cheng L (2017) State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol J 34:524–537

    Article  CAS  Google Scholar 

  • Nagamune T (2017) Biomolecular engineering for nanobio/bionanotechnology. Nano Conv 4:9

    Article  CAS  Google Scholar 

  • Naman CB, Leber CA, Gerwick WH (2017) Modern natural products drug discovery and its relevance to biodiversity conservation. In: Kurtböke I (ed) Microbial resources. Academic Press, Cambridge, MA, pp 103–120

    Chapter  Google Scholar 

  • Netala VR, Kotakadi VS, Nagam V, Bobbu P, Ghosh SB, Tartte V (2015) First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl Nanosci 5:801–807

    Article  CAS  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng WS, Lee ML, Hii SL (2012) An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad Sci Eng Technol 62:723–729

    Google Scholar 

  • Niu B, Wang H, Duan Q, Li L (2013) Biomimicry of quorum sensing using bacterial lifecycle model. BMC Bioinf 14(Suppl 8):S8

    Article  Google Scholar 

  • Ottoni CA, Simões MF, Fernandes S, Dos Santos JG, da Silva ES, de Souza RFB, Maiorano AE (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozden S, Macwan IG, Owuor PS, Kosolwattana S, Autreto PAS, Silwal S, Vajtai R, Tiwary CS, Mohite AD, Patra PK, Ajayan PM (2017) Bacteria as bio-template for 3D carbon nanotube architectures. Sci Rep 7(1):9855

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips DJ, Harrison J, Richards SJ, Mitchell DE, Tichauer E, Hubbard ATM, Guy C, Hands-Portman I, Fullam E, Gibson MI (2017) Evaluation of the antimicrobial activity of cationic polymers against mycobacteria: toward antitubercular macromolecules. Biomacromolecules 18:1592–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart: 963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing, Cham

    Book  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Shanquan W (2018a) Fungal nanobionics: principles and applications. Springer, Singapore. https://www.springer.com/gb/book/9789811086656

  • Prasad R, Jha A, Prasad K (2018b) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0). https://www.springer.com/978-3-319-99570-0

  • Quo CF, Kaddi C, Phan JH, Zollanvari A, Xu M, Wang MD, Alterovitz G (2012) Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities. Brief Bioinform 13:430–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45:1272–1291

    Article  CAS  PubMed  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54:745–756

    Article  Google Scholar 

  • Raman R, Bashir R (2017) Biomimicry, biofabrication, and biohybrid systems: the emergence and evolution of biological design. Adv Healthc Mater 6:1700496

    Article  CAS  Google Scholar 

  • Ramos MA, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM (2018) Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 13:1179–1213

    Article  Google Scholar 

  • Reen FJ, Romano S, Dobson AD, O'Gara F (2015) The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs 13:4754–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldi A (2007) Naturally better: science and technology are looking to nature's successful designs for inspiration. EMBO Rep 8:995–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivnay J, Owens RM, Malliaras GG (2013) The rise of organic bioelectronics. Chem Mater 26:679–685

    Article  CAS  Google Scholar 

  • Rudge TJ, Steiner PJ, Phillips A, Haseloff J (2012) Computational modeling of synthetic microbial biofilms. ACS Synth Biol 1:345–352

    Article  CAS  PubMed  Google Scholar 

  • Schaffner M, Rühs PA, Coulter F, Kilcher S, Studart AR (2017) 3D printing of bacteria into functional complex materials. Sci Adv 3:eaao6804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M (2014) Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 4:52156–52169

    Article  CAS  Google Scholar 

  • Shah S, Venkatramanan V, Prasad R (2019) Microbial fuel cell: Sustainable green technology for bioelectricity generation and wastewater treatment. In: Shah S, Venkatramanan V, Prasad R (eds) Sustainable Green Technologies for Environmental Management. Springer Nature, Singapore, 199–218

    Chapter  Google Scholar 

  • Shi Z, Shi X, Ullah MW, Li S, Revin VV, Yang G (2017) Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Adv Compos Hybrid Mater 1:79–93

    Article  CAS  Google Scholar 

  • Siegert M, Sonawane JM, Ezugwu CI, Prasad R (2019) Economic assessment of nanomaterials in bio-electrical water treatment. In: Prasad R, Karchiyappan T (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham, 1–23

    Google Scholar 

  • Simon DT, Gabrielsson EO, Tybrandt K, Berggren M (2016) Organic bioelectronics: bridging the signaling gap between biology and technology. Chem Rev 116:13009–13041

    Article  CAS  PubMed  Google Scholar 

  • Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14:135–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone W, Kroukamp O, Korber DR, McKelvie J, Wolfaardt GM (2016) Microbes at surface-air interfaces: the metabolic harnessing of relative humidity, surface hygroscopicity, and oligotrophy for resilience. Front Microbiol 7:1563

    Article  PubMed  PubMed Central  Google Scholar 

  • Taidi B, Lebernede G, Koch L, Perre P, Chichkov B (2016) Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture. Int J Bioprint 2:146–152

    Article  Google Scholar 

  • Tanzil AH, Sultana ST, Saunders SR, Shi L, Marsili E, Beyenal H (2016) Biological synthesis of nanoparticles in biofilms. Enzym Microb Technol 95:4–12

    Article  CAS  Google Scholar 

  • Tsompanas MAI, Adamatzky A, Sirakoulis GC, Greenman J, Ieropoulos I (2017) Towards implementation of cellular automata in Microbial Fuel Cells. PLoS One 12:e0177528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turgeman YJ (2015) Microbial mediations: cyber-biological extensions of human sensitivity to natural and made ecologies. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  • Ullah MW, Shi Z, Shi X, Zeng D, Li S, Yang G (2017) Microbes as structural templates in biofabrication: study of surface chemistry and applications. ACS Sustain Chem Eng 5:11163–11175

    Article  CAS  Google Scholar 

  • Unluturk BD, Balasubramaniam S, Akyildiz IF (2016) The impact of social behavior on the attenuation and delay of bacterial nanonetworks. IEEE Trans Nanobioscience 15:959–969

    Article  PubMed  Google Scholar 

  • Van Regenmortel MH (2004) Reductionism and complexity in molecular biology: Scientists now have the tools to unravel biological complexity and overcome the limitations of reductionism. EMBO Rep 5:1016–1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitiello G, Silvestri B, Luciani G (2018) Learning from nature: bioinspired strategies towards antimicrobial nanostructured systems. Curr Top Med Chem 18:22–41

    Article  CAS  PubMed  Google Scholar 

  • Wahl DC (2006) Bionics vs. biomimicry: from control of nature to sustainable participation in nature. Des Nat III 87:289–298

    Google Scholar 

  • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson MR, Zha L, Balskus EP (2017) Natural product discovery from the human microbiome. J Biol Chem 292:8546–8552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuichet K, Alexander RP, Zhulin IB (2007) Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422:1–31

    PubMed  PubMed Central  Google Scholar 

  • You J, Preen RJ, Bull L, Greenman J, Ieropoulos I (2017) 3D printed components of microbial fuel cells: towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technol Assess 19:94–101

    Article  Google Scholar 

  • Zhou AY, Baruch M, Ajo-Franklin CM, Maharbiz MM (2017) A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS One 12:e0184994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

The author thanks I. Ritoré for her collaboration and invaluable support during the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J. (2019). Microbial Nanobionic Engineering: Translational and Transgressive Science of an Antidisciplinary Approximation. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_8

Download citation

Publish with us

Policies and ethics