Skip to main content

Nanomaterials in Microbial Fuel Cells and Related Applications

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 519 Accesses

Abstract

This chapter mainly focuses on microbial fuel cell and applications of nanomaterials in microbial fuel cell. Dumping of waste on environment has increased drastically. It has massive impacts and effects on environment. Also it causes serious problems. Microbial fuel cell is a device that generates sustainable energy from the waste using electrochemically active microorganisms. It is fabricated with electrodes, membranes, and catalysts. It is functioning on the mechanisms like electron transfer mechanism and oxygen reduction reaction. In addition to electricity generation, it has applications like remote power source, fuel gas production (hydrogen and methane), wastewater treatment, water desalination, biosensors, remote sensors, and cleaning of polluted water reservoirs or sources (like ponds, lakes, and rivers). Nanomaterials are emerging as an important materials created by nanotechnology. Particles of these materials are smaller than 100 nanometers in at least one dimension. Their physical and chemical properties often differ from their bulk materials. They are utilized in the fabrication of microbial fuel cell components. Nanomaterials like carbon nanomaterials, nanocomposites, and biogenic inorganic nanoparticles improve the functioning of microbial fuel cell. Their unique property like high surface area supports for the catalytic activity. Also, this chapter discusses about the challenges faced by microbial fuel cell and the factors influencing on the microbial fuel cell output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimension

3D:

Three dimension

AC:

Activated carbon

Am−2:

Ampere per meter square (unit for current density)

Am−3:

Ampere per cubic meter (unit for current density)

ANB:

Acid navy blue r dye

ARB:

Anode-respiring bacteria

Au:

Gold

BECs:

Bioelectrochemical cells

bioMEMS:

Biomedical microelectromechanical systems

BOD:

Biochemical oxygen demand

CE:

Coulomb efficiency

CeO2:

Ceric oxide (or) ceric dioxide (or) ceria (or) cerium oxide (or) cerium dioxide (or) cerium(IV) oxide

CFE:

Carbon felt electrode

CMC:

Carboxymethyl cellulose

CNTs:

Carbon nanotubes

COD:

Chemical oxygen demand

CPPEs:

Carbon paste paper electrodes

Cr(III):

Trivalent chromium

Cr(VI):

Hexavalent chromium

CS:

Chitosan

e−:

Electrons

EDX:

Energy dispersive X-Ray analyzer

Fe-AAPyr:

Iron-aminoantipyrine

GNS:

Graphene nanosheet

GO:

Graphene oxide

H+ ions:

Protons

HRTEM:

Transmission electron microscope

kΩ:

Kiloohm (unit for resistance)

MFC:

Microbial fuel cells

MnO2:

Manganese oxide (or) manganese dioxide (or) manganese(IV) oxide

MnOOH:

Hydroxy-oxido-oxomanganese

mV:

Millivolt (unit for potential)

MWCNTs:

Multiwall carbon nanotubes

mW/m2:

Milliwatts per square meter (unit for power density)

Ni:

Nickel

nm:

Nanometer

nW/cm2:

Nano-watts per square centimeter (unit for power density)

ORR:

Oxygen reduction reaction

PA:

Phosphoric acid

PANI:

Polyaniline

Pd:

Palladium

PDMS:

Polydimethylsiloxane

PEM:

Proton-exchange membrane

pH:

Power of hydrogen

PMMA:

Polymethyl methacrylate

POE:

Poly(oxyethylene)

Pt:

Platinum

PTFE:

Polytetrafluoroethylene

PVA:

Poly(vinyl alcohol)

PVAc-g-PVDF:

Polyvinyl acetate-polyvinylidene fluoride coated cotton fabric

rGO:

Reduced graphene oxide

SCOD:

Soluble chemical oxygen demand

SEM:

Scanning electron microscope

STEM:

Scanning transmission electron microscope

TCOD:

Total chemical oxygen demand

References

  • Alabiad I, Ali UFM, Zakarya IA, Ibrahim N, Radzi RW, Zulkurnai NZ, Azmi NH (2017) Ammonia removal via microbial fuel cell (MFC) dynamic reactor. In: IOP conference series: materials science and engineering, vol. 206, no. 1. IOP Publishing, p 012079

    Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31(8):1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar K, Kadier A, Kumar G, Nastro RA, Jeevitha V (2018) Challenges in microbial fuel cell and future scope. In: Microbial fuel cell. Springer, Cham, pp 483–499

    Chapter  Google Scholar 

  • Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20(9):1856–1859

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour and Bioprocess 3(1):38

    Article  Google Scholar 

  • Chiao M (2008) A microfabricated PDMS microbial fuel cell. J Microelectromech Syst 17(6):1329–1341

    Article  CAS  Google Scholar 

  • Chouler J, Bentley I, Vaz F, O’Fee A, Cameron PJ, Di Lorenzo M (2017) Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochim Acta 231:319–326

    Article  CAS  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294

    Article  CAS  PubMed  Google Scholar 

  • Daniel DK, Mankidy BD, Ambarish K, Manogari R (2009) Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int J Hydrog Energy 34(17):7555–7560

    Article  CAS  Google Scholar 

  • Deng F, Sun J, Hu Y, Chen J, Li S, Chen J, Zhang Y (2017) Biofilm evolution and viability during in situ preparation of a graphene/exoelectrogen composite biofilm electrode for a high-performance microbial fuel cell. RSC Adv 7(67):42172–42179

    Article  CAS  Google Scholar 

  • Dharmadhikari S, Ghosh P, Ramachandran M (2018) Synthesis of proton exchange membranes for dual-chambered microbial fuel cells. J Serb Chem Soc 83(5):611–623

    Article  CAS  Google Scholar 

  • Dong Y, Feng Y, Qu Y, Du Y, Zhou X, Liu J (2015) A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment. Sci Rep 5:18070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldridge T (2014) Achieving industry integration with nanomaterials through financial markets. http://www.nanotech-now.com/columns/?article=835. Accessed 21 Nov 2018

  • El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107(42):18127–18131

    Article  CAS  PubMed  Google Scholar 

  • Erable B, Féron D, Bergel A (2012) Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. ChemSusChem 5(6):975–987

    Article  CAS  PubMed  Google Scholar 

  • Ersan K, Irfan AR, Tukek S (2010) Effect of humidification of gases on first home constructed PEM fuel cell stack potential. Gazi University J Sci 23(1):61–70

    Google Scholar 

  • Fei K, Song TS, Wang H, Zhang D, Tao R, Xie J (2017) Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell. R Soc Open Sci 4(10):170798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng L, Yan Y, Chen Y, Wang L (2011) Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Environ Sci 4(5):1892–1899

    Article  CAS  Google Scholar 

  • Gajda I, Greenman J, Melhuish C, Ieropoulos IA (2016) Electricity and disinfectant production from wastewater: microbial fuel cell as a self-powered electrolyser. Sci Rep 6:25571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi M, Daud WRW, Hassan SH, Oh SE, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255

    Article  CAS  Google Scholar 

  • Ghasemi M, Halakoo E, Sedighi M, Alam J, Sadeqzadeh M (2015) Performance comparison of three common proton exchange membranes for sustainable bioenergy production in microbial fuel cell. Procedia CIRP 26:162–166

    Article  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103(30):11358–11363

    Article  CAS  PubMed  Google Scholar 

  • Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39(11):4433–4448

    Article  CAS  PubMed  Google Scholar 

  • Hassan SH, Kim YS, Oh SE (2012) Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzym Microb Technol 51(5):269–273

    Article  CAS  Google Scholar 

  • Hsu WH, Tsai HY, Huang YC (2017) Characteristics of carbon nanotubes/graphene coatings on stainless steel meshes used as electrodes for air-cathode microbial fuel cells. J Nanomater 2017:9875301

    Article  CAS  Google Scholar 

  • Huang Z, Wu Z, Zhou F, Zhou J (1997) Ovulation prediction by monitoring the conductivity of woman’s saliva. In: Engineering in medicine and biology society, 1997. Proceedings of the 19th annual international conference of the IEEE, vol 5. IEEE, pp 2344–2346

    Google Scholar 

  • Hubler AW, Osuagwu O (2010) Digital quantum batteries: energy and information storage in nanovacuum tube arrays. Complexity 15(5):48–55

    Google Scholar 

  • Humphries AC, Nott KP, Hall LD, Macaskie LE (2004) Continuous removal of Cr (VI) from aqueous solution catalysed by palladised biomass of Desulfovibrio vulgaris. Biotechnol Lett 26(19):1529–1532

    Article  CAS  PubMed  Google Scholar 

  • Igem.org (2018) Microbial fuel cell. [Online] Available at: http://2013.igem.org/Team:Bielefeld-Germany/Project/MFC. Accessed 21 Nov 2018

  • Jiang X, Hu J, Lieber AM, Jackan CS, Biffinger JC, Fitzgerald LA, Ringeisen BR, Lieber CM (2014) Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett 14(11):6737–6742

    Article  CAS  PubMed  Google Scholar 

  • Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY (2009) Cyanide removal from cassava mill wastewater using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 172(1):224–228

    Article  CAS  PubMed  Google Scholar 

  • Khan MD, Abdulateif H, Ismail IM, Sabir S, Khan MZ (2015) Bioelectricity generation and bioremediation of an azo-dye in a microbial fuel cell coupled activated sludge process. PLoS One 10(10):e0138448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan N, Clark I, Bolan N, Meier S, Saint CP, Sánchez-Monedero MA, Shea S, Lehmann J, Qiu R (2017) Development of a buried bag technique to study biochars incorporated in a compost or composting medium. J Soils Sediments 17(3):656–664

    Article  CAS  Google Scholar 

  • Khudzari JM, Tartakovsky B, Raghavan GV (2016) Effect of C/N ratio and salinity on power generation in compost microbial fuel cells. Waste Manag 48:135–142

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25(7):541–545

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76(3):485

    Article  CAS  PubMed  Google Scholar 

  • Kodali M, Herrera S, Kabir S, Serov A, Santoro C, Ieropoulos I, Atanassov P (2018) Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochim Acta 265:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Singh L, Wahid ZA (2015) Role of microorganisms in microbial fuel cells for bioelectricity production. In: Microbial Factories. Springer, New Delhi, pp 135–154

    Chapter  Google Scholar 

  • Lal Deeksha (2013) Microbes to generate electricity. Indian J Microbiol 53(1):120–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamberg P, Bren KL (2016) Extracellular Electron transfer on sticky paper electrodes: carbon paste paper anode for microbial fuel cells. ACS Energy Lett 1(5):895–898

    Article  CAS  Google Scholar 

  • Li S, Cheng C, Thomas A (2017) Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv Mater 29(8):1602547

    Article  CAS  Google Scholar 

  • Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71(8):4414–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA (2018) A flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria. Nature 562(7725):140. https://doi.org/10.1038/s41586-018-0498-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DH, Wilcox J (2012) Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J Phys Chem C 116(5):3653–3660

    Article  CAS  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006a) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006b) Microbial fuel cells-challenges and applications. Environ Sci Technol 40(17):5172–5180. https://doi.org/10.1021/es0627592

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Li Z, Zhou A, Yue X (2017) Energy recovery from tubular microbial electrolysis cell with stainless steel mesh as cathode. R Soc Open Sci 4(12):170967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6(9):573

    Article  PubMed  Google Scholar 

  • Mashkour M, Rahimnejad M (2015) Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Res J 2(4)

    Article  CAS  Google Scholar 

  • McGovern C (2010) Commoditization of nanomaterials. Nanotechnol Perceptions 6(3):155

    Article  Google Scholar 

  • Mink JE, Hussain MM (2013) Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano 7(8):6921–6927

    Article  CAS  PubMed  Google Scholar 

  • Mink JE, Qaisi RM, Logan BE, Hussain MM (2014) Energy harvesting from organic liquids in micro-sized microbial fuel cells. Npg Asia Mat 6(3):e89

    Article  CAS  Google Scholar 

  • Miran W, Nawaz M, Jang J, Lee DS (2016) Effect of wastewater containing multi-walled carbon nanotubes on dual-chamber microbial fuel cell performance. RSC Adv 6(94):91314–91319

    Article  CAS  Google Scholar 

  • Moqsud MA, Yoshitake J, Bushra QS, Hyodo M, Omine K, Strik D (2015) Compost in plant microbial fuel cell for bioelectricity generation. Waste Manag 36:63–69

    Article  CAS  PubMed  Google Scholar 

  • Mustakeem M (2015) Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew Sustain Energy 4:22. https://doi.org/10.1007/s40243-015-0063-8

  • Nurettin ÇEK (2017) Examination of zinc electrode performance in microbial fuel cells. Gazi University J Sci 30(4):395–402

    Google Scholar 

  • Omkar S Powar, Lakshminarayana Bhatta KG, Raghavendra Prasad HD, Venkatesh K, Raghu AV (2017) Influence of carbon based electrodes on the performance of the microbial fuel cell. Int J Res-Granthaalayah 5(4: RAST):7–16. https://doi.org/10.5281/zenodo.803412

    Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Penteado ED, Fernandez-Marchante CM, Zaiat M, Gonzalez ER, Rodrigo MA (2017) Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. Environ Technol 38(11):1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Prasertsung N, Reungsang A, Ratanatamskul C (2012) Alkalinity of cassava wastewater feed in anodic enhance electricity generation by a single chamber microbial fuel cells. Eng J 16(5):17–28

    Article  Google Scholar 

  • Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170(1):79–84

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Chae J (2015) Microfabricated microbial fuel cells. In Micro Energy Harvesting, Wiley, pp. 347–361. https://doi.org/10.1002/9783527672943

    Google Scholar 

  • Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58(3):617–622

    Article  CAS  PubMed  Google Scholar 

  • Reuben Y Tamakloe (2018) PEM-less microbial fuel cells, Proton exchange membrane fuel cell, Tolga Taner, IntechOpen. https://doi.org/10.5772/intechopen.71479. Available from: https://www.intechopen.com/books/proton-exchange-membrane-fuel-cell/pem-less-microbial-fuel-cells

    Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas JP, Hussain MM (2015) The role of microfabrication and nanotechnology in the development of microbial fuel cells. Energ Technol 3(10):996–1006

    Article  Google Scholar 

  • Sayed ET, Abdelkareem MA (2017) Yeast as a biocatalyst in microbial fuel cell. In Old yeasts-new questions. InTechOpen. https://doi.org/10.5772/intechopen.70402

    Google Scholar 

  • Schaetzle O, Barrière F, Schröder U (2009) An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy Environ Sci 2(1):96–99

    Article  CAS  Google Scholar 

  • Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629

    Article  PubMed  Google Scholar 

  • Siegert M, Sonawane JM, Ezugwu CI, Prasad R (2019) Economic Assessment of Nanomaterials in Bio-Electrical Water Treatment. In: Prasad R, Thirugnanasanbandham K (eds) Advanced Research in Nanosciences for Water Technology. Springer International Publishing AG, Cham, pp 5–23

    Google Scholar 

  • Sure S, Ackland ML, Torriero AA, Adholeya A, Kochar M (2016) Microbial nanowires: an electrifying tale. Microbiology 162(12):2017–2028

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Li N, Chen S, Liu ZQ (2016) Self-assembly synthesis of CuSe@ graphene–carbon nanotubes as efficient and robust oxygen reduction electrocatalysts for microbial fuel cells. J Mater Chem A 4(31):12273–12280

    Article  CAS  Google Scholar 

  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43(21):8159–8165

    Article  CAS  PubMed  Google Scholar 

  • ToczyÅ‚owska-Maminska R, Szymona K, Król P, Gliniewicz K, Pielech-Przybylska K, Kloch M, Logan BE (2018) Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 11(1):124

    Article  CAS  Google Scholar 

  • Tommasi T, Salvador GP, Quaglio M (2016) New insights in microbial fuel cells: novel solid phase anolyte. Sci Rep 6:29091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai HY, Hsu WH, Huang YC (2015) Characterization of carbon nanotube/graphene on carbon cloth as an electrode for air-cathode microbial fuel cells. J Nanomater 2015:3

    Article  CAS  Google Scholar 

  • Valipour A, Ayyaru S, Ahn Y (2016) Application of graphene-based nanomaterials as novel cathode catalysts for improving power generation in single chamber microbial fuel cells. J Power Sources 327:548–556

    Article  CAS  Google Scholar 

  • Wang Z, Lee T, Lim B, Choi C, Park J (2014) Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol Biofuels 7(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waste-management-world.com (2013) Bacteria that turn waste to energy in microbial fuel cells studied. [Online] Available at: https://waste-management-world.com/a/bacteria-that-turn-waste-to-energy-in-microbial-fuel-cells-studied. Accessed 21 Nov 2018

  • Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2010) Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Lett 11(1):291–296

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47(12):1707–1714

    Article  CAS  Google Scholar 

  • Yang G, Chen D, Lv P, Kong X, Sun Y, Wang Z, Yuan Z, Liu H, Yang J (2016a) Core-shell au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Sci Rep 6:35252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Ren Y, Li X, Wang X (2016b) Effect of graphene-graphene oxide modified anode on the performance of microbial fuel cell. Nano 6(9):174

    Google Scholar 

  • Yang Q, Liang S, Liu J, Lv J, Feng Y (2017) Analysis of anodes of microbial fuel cells when carbon brushes are preheated at different temperatures. Catalysts 7(11):312

    Article  CAS  Google Scholar 

  • Yin Y, Huang G, Zhou N, Liu Y, Zhang L (2016) Increasing power generation of microbial fuel cells with a nano-CeO2 modified anode. Energy Sources, Part A 38(9):1212–1218

    Article  CAS  Google Scholar 

  • Yong YC, Dong XC, Chan-Park MB, Song H, Chen P (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6(3):2394–2400

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47(24):14525–14532

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu C, Zhuang L, Li W, Zhou S, Zhang J (2009) Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens Bioelectron 24(9):2825–2829

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Jiang Y, Han J (2017a) A flexible nanocomposite membrane based on traditional cotton fabric to enhance performance of microbial fuel cell. Fibers and Polym 18(7):1296–1303

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang J, Zhao Q, Gao Y, Wang K, Ding J, Yu H, Yao Y (2017b) Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: role of anionic biosurfactants and mechanism. Bioelectrochemistry 117:48–56

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y (2013) Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chem Eng J 229:364–370

    Article  CAS  Google Scholar 

  • Zhou M, Wang H, Hassett DJ, Gu T (2013) Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol Biotechnol 88(4):508–518

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author expresses thanks to her husband Mr. G. Sankar for his assistances in this work. Also, she acknowledges the assistances of the International Research Center, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil – 626 126 (India).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thirugnanasambandan, T. (2019). Nanomaterials in Microbial Fuel Cells and Related Applications. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_13

Download citation

Publish with us

Policies and ethics