Skip to main content

Antimicrobial Nanocomposites for Improving Indoor Air Quality

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 532 Accesses

Abstract

In modern society, the improvement in indoor air quality, especially airborne microbes, needs much attention to reduce the serious health issues caused by the notorious microbes present in the air. In the current scenario, natural product-based nanomaterials are considered safe and economical base materials for the development of air filters. Nanocomposites based on polymeric phase along with natural fibers have resulted in a high-performance solution due to the high surface area, low cost, biodegradability, and excellent mechanical and thermal properties. In addition, natural products of herbal origin such as essential oils or herbal extracts have tremendous antimicrobial potential against a wide range of microbes. Therefore, the combination of these herbals with existing nanocomposite surfaces would be able to provide high contact with microbes, and the delayed diffusion of active therapeutics from the surface adds a positive effect on the antimicrobial potential. Furthermore, herbs are historically proven antimicrobial agents and have provided important solutions to medical and environmental health concerns. Apart from that, the development of antibiotic resistance in bacterial strains is an alarming condition requiring exploration of novel antimicrobial agents and their proper utilization for reducing microbial infections. Therefore, first, novel essential oils or herbal extracts should be used for this purpose, and second, their combination with nanocomposites would be helpful in controlling their release to improve their antimicrobial abilities.

This chapter describes the importance of using nanocomposites with natural products to improve indoor air quality in terms of controlling airborne microbes. The chapter assesses the development of new biodegradable nanocomposites, their preparation, advantages, and also the potential application of herbal therapeutic molecules in improving indoor air quality. Currently, manufacturers of these types of air filters are able to provide newer and greener solutions and they may be employed for different industrial sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RI, Bhangar S, Pasut W, Arens EA, Taylor JW, Lindow SE, Nazaroff WW, Bruns TD (2015) Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes. PLoS One 10:e0128022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adhikari A, Kettleson EM, Vesper S, Kumar S, Popham DL, Schaffer C, Indugula R, Chatterjee K, Allam KK, Grinshpun SA (2014) Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Sci Total Environ 482:92–99

    Article  PubMed  CAS  Google Scholar 

  • Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 13:918–926

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    Article  CAS  PubMed  Google Scholar 

  • Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2018) Morphological, physico-mechanical, and antimicrobial properties of sodium alginate-montmorillonite nanocomposite films incorporated with marjoram essential oil. J Food Process Preserv 42:e13596

    Article  CAS  Google Scholar 

  • Ambrosio CM, de Alencar SM, de Sousa RL, Moreno AM, Da Gloria EM (2017) Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crop Prod 97:128–136

    Article  CAS  Google Scholar 

  • Ana GR, Morakinyo OM, Fakunle GA (2015) Indoor air quality and risk factors associated with respiratory conditions in Nigeria. Current Air Quality Issues. IntechOpen, 2015

    Google Scholar 

  • Behbahani BA, Yazdi FT, Vasiee A, Mortazavi SA (2018) Oliveria decumbens essential oil: chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microb Pathog 114:449–452

    Article  CAS  Google Scholar 

  • Bhatia L (2011) Impact of bioaerosols on indoor air quality – a growing concern. Adv Bioresearch 2:120–123

    CAS  Google Scholar 

  • Brągoszewska E, Pastuszka JS (2018) Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34:241–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4:59–64

    Article  CAS  Google Scholar 

  • Choi J, Yang BJ, Bae G-N, Jung JH (2015) Herbal extract incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration. ACS Appl Mater Interfaces 7:25313–25320

    Article  CAS  PubMed  Google Scholar 

  • Dahiya P, Purkayastha S (2012) Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant Bacteria from clinical isolates. Indian J Pharm Sci 74:443–450

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta A, Suresh R, Gupta A, Singh D, Kulshrestha P (2017) Indoor air quality of non-residential urban buildings in Delhi, India. Int J Sust Built Env 6:412–420

    Article  Google Scholar 

  • Després VR, et al. (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B: Chem Phys Meteorol 64(1):15598

    Article  Google Scholar 

  • Dhiman R, Aggarwal N, Aneja KR, Kaur M (2016) In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. Int J Microbiol 2016:9015802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32:1711–1726

    Article  CAS  Google Scholar 

  • Fan X, et al. (2018) A nanoprotein-functionalized hierarchical composite air filter. ACS Sust Chem Eng 6(9):11606–11613

    Article  CAS  Google Scholar 

  • Faridi S, Hassanvand MS, Naddafi K, Yunesian M, Nabizadeh R, Sowlat MH, Kashani H, Gholampour A, Niazi S, Zare A (2015) Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory. Environ Sci Pollut Res 22:8190–8200

    Article  CAS  Google Scholar 

  • Feng K, Wen P, Yang H, Li N, Lou WY, Zong MH, Wu H (2017) Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Adv 7:1572–1580

    Article  CAS  Google Scholar 

  • Fernández LC, Alvarez RF, González-Barcala FJ, Portal JAR (2013) Indoor air contaminants and their impact on respiratory pathologies. Archivos de Bronconeumología (English Edition) 49:22–27

    Article  Google Scholar 

  • Foroughi A, Pournaghi P, Zhaleh M, Zangeneh A, Zangeneh MM, Moradi R (2016) Antibacterial activity and phytochemical screening of essential oil of Foeniculum vulgare. Int J Pharm Clin Res 8:1505–1509

    Google Scholar 

  • Georgakopoulos D, Després V, Fröhlich-Nowoisky J, Psenner R, Ariya P, Pósfai M, Ahern H, Moffett B, Hill T (2009) Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles. Biogeosciences 6:721–737

    Article  CAS  Google Scholar 

  • Ghosh B, Lal H, Kushwaha R, Hazarika N, Srivastava A, Jain V (2013) Estimation of bioaerosol in indoor environment in the university library of Delhi. Sustain Environ Res 23:199–207

    CAS  Google Scholar 

  • Grinshpun SA, Adhikari A, Honda T, Kim KY, Toivola M, Ramchander Rao KS, Reponen T (2007) Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environ Sci Technol 41:606–612

    Article  CAS  PubMed  Google Scholar 

  • Han B, Kang J-S, Kim H-J, Woo C-G, Kim Y-J (2015) Investigation of antimicrobial activity of grapefruit seed extract and its application to air filters with comparison to propolis and shiitake. Aerosol Air Qual Res 15:1035–1044

    Article  CAS  Google Scholar 

  • Han Y, Wang Y, Li L, Xu G, Liu J, Yang K (2018) Bacterial population and chemicals in bioaerosols from indoor environment: sludge dewatering houses in nine municipal wastewater treatment plants. Sci Total Environ 618:469–478

    Article  CAS  PubMed  Google Scholar 

  • Hans M, Erbe A, Mathews S, Chen Y, Solioz M, Mücklich F (2013) Role of copper oxides in contact killing of bacteria. Langmuir 29:16160–16166

    Article  CAS  PubMed  Google Scholar 

  • Hwang GB, Heo KJ, Yun JH, Lee JE, Lee HJ, Nho CW, Bae G-N, Jung JH (2015) Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS One 10:e0126481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joe YH, Park DH, Hwang J (2016) Evaluation of Ag nanoparticle coated air filter against aerosolized virus: anti-viral efficiency with dust loading. J Hazard Mater 301:547–553

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations – a review. Sci Total Environ 326:151–180

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Hwang GB, Park SY, Lee JE, Nho CW, Lee BU, Bae G-N (2011) Antimicrobial air filtration using airborne Sophora flavescens natural-product nanoparticles. Aerosol Sci Technol 45:1510–1518

    Article  CAS  Google Scholar 

  • Kang JS, Kim H, Choi J, Yi H, Seo SC, Bae G-N, Jung JH (2016) Antimicrobial air filter fabrication using a continuous high-throughput aerosol-based process. Aerosol Air Qual Res 16:2059–2066

    Article  CAS  Google Scholar 

  • Ko Y-S, Joe YH, Seo M, Lim K, Hwang J, Woo K (2014) Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. J Mater Chem B 2:6714–6722

    Article  CAS  Google Scholar 

  • Lai G-J, Shalumon K, Chen S-H, Chen J-P (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wang C, Zhang Y, Wei F (2014) Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small 10:4543–4561

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xu H, Zhang C, Gao M, Gao X, Ma C, Lv L, Gao D, Deng S, Wang C (2016) Emodin-loaded PLGA-TPGS nanoparticles combined with heparin sodium-loaded PLGA-TPGS nanoparticles to enhance chemotherapeutic efficacy against liver cancer. Pharm Res 33:2828–2843

    Article  CAS  PubMed  Google Scholar 

  • Maleknia L, Majdi ZR (2014) Electrospinning of gelatin nanofiber for biomedical application. Orient J Chem 30:2043–2048

    Article  CAS  Google Scholar 

  • Mandal J, Brandl H (2011) Bioaerosols in indoor environment – a review with special reference to residential and occupational locations. Open Environ Biological Monit J 4:83–96

    Article  Google Scholar 

  • Mannucci PM, Franchini M (2017) Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health 14:1048

    Article  PubMed Central  CAS  Google Scholar 

  • Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods 7:72

    Article  PubMed Central  CAS  Google Scholar 

  • Maryam I, Huzaifa U, Hindatu H, Zubaida S (2015) Nanoencapsulation of essential oils with enhanced antimicrobial activity: a new way of combating antimicrobial resistance. J Pharmacog Phytochem 4:165

    CAS  Google Scholar 

  • Milanowski J, Dutkiewicz J (2002) Exposure to airborne microorganisms in furniture factories. Ann Agric Environ Med 9:85–90

    PubMed  Google Scholar 

  • Nascimento GG, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 31:247–256

    Google Scholar 

  • Ortiz CM, Salgado PR, Dufresne A, Mauri AN (2018) Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocoll 79:416–427

    Article  CAS  Google Scholar 

  • Pathak AK (2014) Aero bacteriology of concentrated animal feeding operations: a review. Cibtech J Zool 5(1):40–47

    Google Scholar 

  • Peccia J, Kwan SE (2016) Buildings, beneficial microbes, and health. Trends Microbiol 24:595–597

    Article  CAS  PubMed  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540

    Article  CAS  Google Scholar 

  • Priyamvada H, Priyanka C, Singh RK, Akila M, Ravikrishna R, Gunthe SS (2018) Assessment of PM and bioaerosols at diverse indoor environments in a southern tropical Indian region. Build Environ 137:215–225

    Article  Google Scholar 

  • Prussin AJ, Marr LC (2015) Sources of airborne microorganisms in the built environment. Microbiome 3:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran R, Radhai R, Kotresh T, Csiszar E (2013) Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym 91:613–617

    Article  CAS  PubMed  Google Scholar 

  • Schwab F, Gastmeier P, Meyer E (2014) The warmer the weather, the more gram-negative bacteria – impact of temperature on clinical isolates in intensive care units. PLoS One 9:e91105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin S-K, Kim J, Ha S-M, Oh H-S, Chun J, Sohn J, Yi H (2015) Metagenomic insights into the bioaerosols in the indoor and outdoor environments of childcare facilities. PLoS One 10:e0126960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S, Gaikwad KK, Lee YS (2018) Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int J Biol Macromol 107:1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Smith-Cavros E, Eisenhauer E (2014) Overtown: neighbourhood, change, challenge and “invironment”. Local Environ 19:384–401

    Article  Google Scholar 

  • Soleimani Z, Goudarzi G, Sorooshian A, Marzouni MB, Maleki H (2016) Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmos Environ 138:135–143

    Article  CAS  Google Scholar 

  • Soriano JB, Abajobir AA, Abate KH, Abera SF, Agrawal A, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Alam K (2017) Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 5:691–706

    Article  Google Scholar 

  • Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Baños S, Corona-Rangel M (2017) Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT Food Sci Technol 77:15–20

    Article  CAS  Google Scholar 

  • Souzandeh H, Molki B, Zheng M, Beyenal H, Scudiero L, Wang Y, Zhong W-H (2017) Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration. ACS Appl Mater Interfaces 9:22846–22855

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (2016) Greenhouse gas emissions. https://www3.epa.gov/climatechange/ghgemissions/ Accessed 10 January 2016.

  • Vincent M, Percier P, De Prins S, Huygen K, Potemberg G, Muraille E, Romano M, Michel O, Denis O (2017) Investigation of inflammatory and allergic responses to common mold species: results from in vitro experiments, from a mouse model of asthma, and from a group of asthmatic patients. Indoor Air 27:933–945

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Pan Z (2015) Preparation of hierarchical structured nano-sized/porous poly (lactic acid) composite fibrous membranes for air filtration. Appl Surf Sci 356(2015):1168–1179

    Article  CAS  Google Scholar 

  • Wang Z, Pan Z, Wang J, Zhao R (2016a) A novel hierarchical structured poly (lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance. J Nanomater 2016:39

    Google Scholar 

  • Wang C, Wu S, Jian M, Xie J, Xu L, Yang X, Zheng Q, Zhang Y (2016b) Silk nanofibers as high efficient and lightweight air filter. Nano Res 9:2590–2597

    Article  CAS  Google Scholar 

  • Wang S, Zhao X, Yin X, Yu J, Ding B (2016c) Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8:23985–23994

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Balasubramanian K (2016) Bioabsorbable engineered nanobiomaterials for antibacterial therapy, engineering of nanobiomaterials. Elsevier, Amsterdam, pp 77–117

    Google Scholar 

  • Zhang Y, Liu X, Wang Y, Jiang P, Quek S (2016) Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59:282–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, D., Khare, P. (2019). Antimicrobial Nanocomposites for Improving Indoor Air Quality. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_11

Download citation

Publish with us

Policies and ethics