Application of Nanoparticles in Crop Production and Protection

  • Aadil Rasool
  • Wasifa Hafiz Shah
  • Inayatullah Tahir
  • Reiaz Ul Rehman
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology discusses about the manufacture and exploitation of materials whose ingredients exist at the nanoscale. Recent manufacturing progressions have managed to alter nanomaterials into different sizes and shapes. Nanoparticles are being used for multiple purposes like in electronics, sensor technology optical devices, biological labeling, and medical treatments. However, the use of nanoparticles in agriculture, especially for crop production and protection, is an unmapped area. This review sums up application and role of nanomaterials in enhancing future crop production and protection.


Nanoparticles Crop protection Nanopesticides Nanofertilizers Toxicity 


  1. Abd-Elsalam KA (2013) Nano platforms for plant pathogenic fungi management. App Phys A 100:829–834Google Scholar
  2. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology Applications in Plant Protection. Springer International Publishing (ISBN 978-3-319-91161-8)
  3. Alvarez-Puebla RA, Dos Santos DS Jr, Aroca RF (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 12912:1251–1256CrossRefGoogle Scholar
  4. Ampleyeva LE, Konkov AA, Rudnaya AV (2012) Bulletin of Ryazan Agrotechnological University, edited by Kostychev’s PA (In Russian), 3:33Google Scholar
  5. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310CrossRefGoogle Scholar
  6. Aslani F, Bagheri S, MuhdJulkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J. Scholar
  7. Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21PubMedCrossRefGoogle Scholar
  8. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857PubMedCrossRefGoogle Scholar
  9. Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85CrossRefGoogle Scholar
  10. Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19(4):73–82CrossRefGoogle Scholar
  11. Bhatt JSA (2003) Heralding a new future-Nanotechnology. Curr Sci 85(2):147–154Google Scholar
  12. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and applications through fungal nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319Google Scholar
  13. Bohr MT (2002) Nanotechnology goals and challenges for electronic applications. IEEE Trans Nanotechnol 1:56–62CrossRefGoogle Scholar
  14. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610CrossRefGoogle Scholar
  15. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles AgNPs stabilized by polyvinylpyrrolidone PVP. J Chem Biol 44:185CrossRefGoogle Scholar
  16. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology towards biomedical applications. Adv Drug Deliv Rev 60:299–327PubMedCrossRefGoogle Scholar
  17. Calandra P, La Parola V, Turco Liveri V, Lidorikis E, Finocchi F (2013) Composite nanoparticles. J Chem. Scholar
  18. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 279:1922–1931CrossRefGoogle Scholar
  19. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280CrossRefGoogle Scholar
  20. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134PubMedCrossRefGoogle Scholar
  21. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105CrossRefGoogle Scholar
  22. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540CrossRefGoogle Scholar
  23. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1CrossRefGoogle Scholar
  24. Esfand R, Tomalia DA (2001) Polyamidoamine (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fernandes T, Nielsen H, Burridge T, Stone V (2007) Toxicity of nanoparticles to embryos of the marine macroalgae Fucus serratus. 2nd international conference on the environmental effects of nanoparticles and nanomaterials, London, EnglandGoogle Scholar
  26. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 54:382–386CrossRefGoogle Scholar
  27. Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4:37–51CrossRefGoogle Scholar
  28. Gao FQ, Hong FS, Liu C, Zheng L, Su MY (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111:286–301CrossRefGoogle Scholar
  29. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652PubMedGoogle Scholar
  30. Ghorbanpour M, Fahimirad S (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Medicinal plants and environmental challenges. Springer, Cham, pp 247–257CrossRefGoogle Scholar
  31. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 134:400CrossRefGoogle Scholar
  32. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279PubMedCrossRefGoogle Scholar
  33. Hubler A, Lyon D (2013) Gap size dependence of the dielectric strength in nano vacuum gaps. IEEE Trans Dielectr Electr Insul 20(4):1467CrossRefGoogle Scholar
  34. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13(4):225–232CrossRefGoogle Scholar
  35. Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83.CrossRefGoogle Scholar
  36. Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, Ahmad R (2014) Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr Polym 104:29–33PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10(21):1435–1442PubMedCrossRefGoogle Scholar
  38. James EM (1999) Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78:125–139CrossRefGoogle Scholar
  39. Janmohammadi M, Sabaghnia N, Ahadnezhad A (2015) Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris medik.) genotypes with various origins. Agriculture and. Forestry 61(3):1933Google Scholar
  40. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423CrossRefGoogle Scholar
  41. Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112CrossRefGoogle Scholar
  42. Jogee PS, Ingle AP, Rai M (2017) Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control 71:143–151CrossRefGoogle Scholar
  43. Judy JD (2013) Bioavailability of manufactured nanomaterials in terrestrial ecosystems. Thesis and dissertations plant and soil sciences. Paper 18.
  44. Kah M, Hofmann T (2015) The challenge: carbon nanomaterials in the environment: new threats or wonder materials? Environ Toxicol Chem 34:954PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modelling. Crit Rev Environ Sci Technol 4316:1823–1867CrossRefGoogle Scholar
  46. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307CrossRefGoogle Scholar
  47. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. Scholar
  48. Khizhnyak SV, Shevelyov DI, Samoylova VA (2015) Influence of biogenic nanoparticles of ferrihydrite on the efficiency of etching wheat seeds. Bulletin of Krasnoyarsk State Agrarian University (10)Google Scholar
  49. Khodakovskaya MV, de-Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 63:2128–2135CrossRefGoogle Scholar
  50. Khodakovskaya MV, Kim B, Kim JN, Alimohammadi M, Dervishi E, Mustafa T et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions Ag+, Cu2+, Zn2+ in hydroxyapatite. J Mater Sci Mater Med 93:129–134CrossRefGoogle Scholar
  52. Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124PubMedCrossRefGoogle Scholar
  53. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  54. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 516:7965–7973CrossRefGoogle Scholar
  56. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 110:2574–2574CrossRefGoogle Scholar
  57. Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lei Z, Mingyu S, Xiao W (2007) Effects of nano-anatase on spectral characteristics and distribution of LCHII on the thylakoid membranes of spinach. Biol Trace Elem Res 120:273–283PubMedCrossRefPubMedCentralGoogle Scholar
  59. Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 633:241–246CrossRefGoogle Scholar
  60. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 1502:243–250CrossRefGoogle Scholar
  61. Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178PubMedCrossRefPubMedCentralGoogle Scholar
  62. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686–5691PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liu X, Zhang D, Zhang S, He X, Wang Y, Feng Z (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fertilizer Sci 11:385–389Google Scholar
  64. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 1055:1410–1415CrossRefGoogle Scholar
  65. Liu H, Xu GW, Wang YF, Zhao HS, Xiong S, Wu Y, Xie DH (2015) Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49:103–112PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(4):168–172Google Scholar
  67. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 783:273–279CrossRefGoogle Scholar
  68. McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3(3):506–533CrossRefGoogle Scholar
  69. Morla S, Rao CR, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci 1(2):328Google Scholar
  70. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  71. Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463CrossRefGoogle Scholar
  72. Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27(2):705–713PubMedCrossRefPubMedCentralGoogle Scholar
  73. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823PubMedPubMedCentralCrossRefGoogle Scholar
  74. Portney NG, Mihrimah O (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384(3):620–630PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169Google Scholar
  76. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131PubMedCrossRefPubMedCentralGoogle Scholar
  77. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  78. Prasad R, Kumar M, Kumar V (2017a) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore (ISBN: 978-981-10-4573-8)Google Scholar
  79. Prasad R, Kumar V and Kumar M (2017b) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore (ISBN 978-981-10-4678-0)Google Scholar
  80. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  81. Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420CrossRefGoogle Scholar
  82. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 598:3485–3498CrossRefGoogle Scholar
  83. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T and Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea) Frontiers in plant science 9;7:815Google Scholar
  84. Sah S, Sorooshzadeh A, Rezazadeh HS, Naghdibadi HA (2011) Effect of nano silver and silver nitrate on seed yield of borage. J Med Plants Res 55:706–710Google Scholar
  85. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A et al (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sanjeeb KS, Vinod L (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120CrossRefGoogle Scholar
  87. Santhoshkumar T, Rahuman AA, Bagavan A, Marimuthu S, Jayaseelan C, Kirthi AV et al (2012) Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp Parasitol 132(2):156–165PubMedCrossRefGoogle Scholar
  88. Serrato-Valenti G, Cornara L, Modenesi P, Piana M, Mariotti MG (2000) Structure and histochemistry of embryo envelope tissues in the mature dry seed and early germination of Phacelia tanacetifolia. Ann Bot 855:625–634CrossRefGoogle Scholar
  89. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148CrossRefGoogle Scholar
  90. Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233PubMedCrossRefGoogle Scholar
  91. Shin, Seung Won, In Hyun Song, Soong Ho Um (2015) Role of physicochemical properties in nanoparticle toxicity. Nano 3:1351–1365PubMedPubMedCentralCrossRefGoogle Scholar
  92. Siddiqui M, Al-Whaibi H (2013) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum). Saudi J Biol Sci 21(1):13–17PubMedPubMedCentralCrossRefGoogle Scholar
  93. Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153PubMedCrossRefGoogle Scholar
  94. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437PubMedCrossRefGoogle Scholar
  95. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Nanotechnology and plant sciences. Springer, Cham, pp 19–35Google Scholar
  96. Sillen WM, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22CrossRefGoogle Scholar
  97. Smitha SL, Gopchandran KG (2013) Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 102:114–119PubMedCrossRefGoogle Scholar
  98. Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152PubMedCrossRefGoogle Scholar
  99. Srinivasa-Gopalan S, Yarema KJ (2007) Nanotechnologies for the life sciences: dendrimers in cancer treatment and diagnosis, vol 7. Wiley, New YorkGoogle Scholar
  100. Stephenson C, Hubler A (2015) Stability and conductivity of self assembled wires in a transverse electric field. Sci Rep 5:15044PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tan WM, Hou N, Pang S, Zhu XF, Li ZH, Wen LX, Duan LS (2012) Improved biological effects of uniconazole using porous hollow silica nanoparticles as carriers. Pest Manag Sci 68(3):437–443PubMedCrossRefGoogle Scholar
  102. Taniguchi N (1974) On the basic concept of nanotechnology. International Conference on Precision Engineering (ICPE), Tokyo, Japan, pp 18–23Google Scholar
  103. Tara NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289CrossRefGoogle Scholar
  104. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262PubMedCrossRefGoogle Scholar
  105. Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A 9:2719CrossRefGoogle Scholar
  106. Trivedi AK, Hemantaranjan A (2017) Special Supplement 5. Adv Plant Physiol 15:106Google Scholar
  107. Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wei C, Yamato M, Wei ZX, Tsumoto K, Yoshimura T, Ozawa T, Chen YJ (2007) Genetic nanomedicine and tissue engineering. Med Clin N Am 91:889–898PubMedCrossRefPubMedCentralGoogle Scholar
  109. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  110. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190PubMedCrossRefPubMedCentralGoogle Scholar
  111. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24(6):1305–1314PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zambrano-Zaragoza ML, Mercado-Silva E, Gutiérrez-Cortez E, Castaño-Tostado E, Quintanar-Guerrero D (2011) Optimization of nanocapsules preparation by the emulsion-diffusion method for food applications. LWT-Food Sci Technol 44:1362–1368CrossRefGoogle Scholar
  114. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17CrossRefGoogle Scholar
  115. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  116. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80CrossRefGoogle Scholar
  117. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aadil Rasool
    • 1
  • Wasifa Hafiz Shah
    • 1
  • Inayatullah Tahir
    • 2
  • Reiaz Ul Rehman
    • 1
  1. 1.Department of BioresourcesUniversity of KashmirHazratbal, SrinagarIndia
  2. 2.Department of BotanyUniversity of KashmirHazratbal, SrinagarIndia

Personalised recommendations