Perovskite Oxide–Based Photocatalysts for Excellent Visible Light–Driven Photocatalysis and Energy Conversion

  • Ping Feng Lim
  • Kah Hon LeongEmail author
  • Lan Ching Sim
  • Pichiah Saravanan
  • Azrina Abd Aziz
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Perovskite oxide–based photocatalysts are classified as a compound with general formula ABO3. They are novel materials that exhibit unique properties such as wide range of ferroelectrical, piezoelectrical, and pyroelectrical properties and electro-optical effects, which enable them to be used for various applications. This chapter discusses and studies the preparation, characterization, and application of the various perovskite oxide–based photocatalysts . Moreover, this chapter also provides an in-depth study to understand their electron mobility under visible light–sensitive applications ranging from environmental remediation to energy conversion. At the end of this chapter, the potential and future perspectives of these materials are summarized..


Perovskite oxides Photocatalysis Energy conversion Photocatalyst 



This research work was supported by Universiti Tunku Abdul Rahman Research Fund, UTARRF (IPSR/RMC/UTARRF/2016-C2/L05).


  1. Abdullah B, Ghani NAA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185CrossRefGoogle Scholar
  2. Alammar T, Hamm I, Wark M, Mudring AV (2015) Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications. Appl Catal B-Environ 178:20–28CrossRefGoogle Scholar
  3. Al-Rasheed RA (2005) Water treatment by heterogeneous photocatalysis an overview. 1–14 In: 4th SWCC acquired experience symposium, JeddahGoogle Scholar
  4. Arora S, Prasad R (2016) An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Adv 6(110):108668–108688CrossRefGoogle Scholar
  5. Bera A, Wu K, Sheikh A, Alarousu E, Mohammed OF, Wu T (2014) Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C 118:28494–28501CrossRefGoogle Scholar
  6. Burnside S, Moser JE, Brooks K, Grätzel M, Cahen D (1999) Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B 103(43):9328–9332CrossRefGoogle Scholar
  7. Cao T, Li Y, Wang C, Shao C, Liu Y (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6):2946–2952PubMedCrossRefGoogle Scholar
  8. Cheng H, Lu Z (2008) Synthesis and gas-sensing properties of CaSnO3 microcubes. Solid State Sci 10(8):1042–1048CrossRefGoogle Scholar
  9. Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC (2002) Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environ Pollut 120(2):415–422PubMedCrossRefGoogle Scholar
  10. Delmon B (2007) Preparation of heterogeneous catalysts. J Therm Anal Calorim 90(1):49–65CrossRefGoogle Scholar
  11. Deng J, Zhang L, Liu Y, Dai H (2011) Controlled fabrication and catalytic applications of specifically morphological and porous perovskite type oxides. ChemInform 42(21):1–66CrossRefGoogle Scholar
  12. Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252(1):46–52CrossRefGoogle Scholar
  13. Feng X, Chen H, Jiang F, Wang X (2018) Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation. J Colloid Interf Sci 509:298–306CrossRefGoogle Scholar
  14. Grabowska E (2016) Selected perovskite oxides: characterization, preparation and photocatalytic properties-a review. Appl Catal B-Environ 186:97–126CrossRefGoogle Scholar
  15. Guan X, Guo L (2014) Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation. ACS Catal 4(9):3020–3026CrossRefGoogle Scholar
  16. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Edit 52(29):7372–7408CrossRefGoogle Scholar
  17. He X, Hu C, Xi Y, Wan B, Xia C (2009) Electroless deposition of BaTiO3 nanocubes for electrochemical sensing. Sensor Actuat B-Chem 137(1):62–66CrossRefGoogle Scholar
  18. Hu Y, Tan OK, Cao W, Zhu W (2004) A low temperature nano-structured SrTiO3 thick film oxygen gas sensor. Ceram Int 30(7):1819–1822CrossRefGoogle Scholar
  19. Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sensor Actuat B-Chem 108(1–2):244–249CrossRefGoogle Scholar
  20. Huang ST, Lee WW, Chang JL, Huang WS, Chou SY, Chen CC (2014) Hydrothermal synthesis of SrTiO3 nanocubes: characterization, photocatalytic activities, and degradation pathway. J Taiwan Inst Chem E 45(4):1927–1936CrossRefGoogle Scholar
  21. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19(12):19995–20022PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kanhere P, Tang Y, Zheng J, Chen Z (2013) Synthesis, photophysical properties, and photocatalytic applications of Bi doped NaTaO3 and Bi doped Na2Ta2O6 nanoparticles. J Phys Chem Solids 74(12):1708–1713CrossRefGoogle Scholar
  23. Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K). J Phys Chem B 105(19):4285–4292CrossRefGoogle Scholar
  24. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723CrossRefGoogle Scholar
  25. Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108(26):8992–8995CrossRefGoogle Scholar
  26. Lan J, Zhou X, Liu G, Yu J, Zhang J, Zhi L, Nie G (2011) Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light. Nanoscale 3(12):5161–5167CrossRefGoogle Scholar
  27. Li X, Zang J (2009) Facile hydrothermal synthesis of sodium tantalate (NaTaO3) nanocubes and high photocatalytic properties. J Phys Chem C 113(45):19411–19418CrossRefGoogle Scholar
  28. Li K, An X, Park KH, Khraisheh M, Tang J (2014) A critical review of CO2 photoconversion: catalysts and reactors. Catal Today 224:3–12CrossRefGoogle Scholar
  29. Li J, Wu Q, Wu J (2016) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Handbook of nanoparticles. Springer, Cham, 295–328. Print ISBN: 978-3-319-15337-7, Online ISBN: 978-3-319-15338-4CrossRefGoogle Scholar
  30. Liu JW, Chen G, Li ZH, Zhang ZG (2006) Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3. J Solid State Chem 179(12):3704–3708CrossRefGoogle Scholar
  31. Liu JW, Chen G, Li ZH, Zhang ZG (2007) Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A= Na and K). Int J Hydrogen Energy 32(13):2269–2272CrossRefGoogle Scholar
  32. Liu D-R, Jiang Y-S, Gao G-M (2011) Photocatalytic degradation of azo dye using N-doped NaTaO3 synthesized by one-step hydrothermal process. Chemosphere 83:1546–1552PubMedCrossRefGoogle Scholar
  33. Lüders U, Li QR, Feyerherm R, Dudzik E (2014) The evolution of octahedral rotations of orthorhombic LaVO3 in superlattices with cubic SrVO3. J Phys Chem Solids 75(12):1354–1360CrossRefGoogle Scholar
  34. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photoch Photobio C 12(4):237–268CrossRefGoogle Scholar
  35. Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS (2006) Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J Colloid Interf Sci 295(1):159–164CrossRefGoogle Scholar
  36. Mu L, Zhao Y, Li A, Wang S, Wang Z, Yang J, Wang Y, Liu T, Chen R, Zhu J, Fan F (2016) Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energ Environ Sci 9(7):2463–2469CrossRefGoogle Scholar
  37. Nishimoto S, Matsuda M, Miyake M (2006) Photocatalytic activities of Rh-doped CaTiO3 under visible light irradiation. Chem Lett 35(3):308–309CrossRefGoogle Scholar
  38. Osterloh FE (2007) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54CrossRefGoogle Scholar
  39. Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Prog Solid State Ch 31(1–2):5–147CrossRefGoogle Scholar
  40. Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1–3):10–18CrossRefGoogle Scholar
  41. Reitz C, Brezesinski K, Haetge J, Perlich J, Brezesinski T (2012) Nanocrystalline NaTaO3 thin film materials with ordered 3D mesoporous and nanopillar-like structures through PIB-b-PEO polymer templating: towards high-performance UV-light photocatalysts. RSC Adv 2(12):5130–5133CrossRefGoogle Scholar
  42. Rives V (2016) From solid-state chemistry to soft chemistry routes. In: Perovskites and related mixed oxides: concepts and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–23Google Scholar
  43. Sadik WA, Nashed AW, El-Demerdash AGM (2007) Photodecolourization of ponceau 4R by heterogeneous photocatalysis. J Photoch Photobio A 189(1):135–140CrossRefGoogle Scholar
  44. Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4(10):3637–3643CrossRefGoogle Scholar
  45. Szabo V, Bassir M, Gallot JE, Van Neste A, Kaliaguine S (2003) Perovskite-type oxides synthesised by reactive grinding: Part III. Kinetics of n-hexane oxidation over LaCo(1−x) FexO3. Appl Catal B-Envron 42(3):265–277CrossRefGoogle Scholar
  46. Tanaka H, Misono M (2001) Advances in designing perovskite catalysts. Curr Opin Solid St M 5(5):381–387CrossRefGoogle Scholar
  47. Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130(42):13885–13891PubMedCrossRefGoogle Scholar
  48. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state of the art accomplishment, challenges, and prospects. Adv Mater 26(27):4607–4626PubMedCrossRefGoogle Scholar
  49. Van Benthem K, Elsässer C, French RH (2001) Bulk electronic structure of SrTiO3: experiment and theory. J Appl Phys 90(12):6156–6164CrossRefGoogle Scholar
  50. Vayssieres L (2004) On the design of advanced metal oxide nanomaterials. Int J Nanotechnol 1:1–2):1–41CrossRefGoogle Scholar
  51. Verma AS, Jindal VK (2011) ABX3-type oxides and halides: their structure and physical properties. ChemInform 42(21):463–479CrossRefGoogle Scholar
  52. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121PubMedCrossRefGoogle Scholar
  53. Wang R, Zhu Y, Qiu Y, Leung CF, He J, Liu G, Lau TC (2013) Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light. Chem Eng J 226:123–130CrossRefGoogle Scholar
  54. Wold A, Dwight K (2012) Solid state chemistry: synthesis, structure, and properties of selected oxides and sulfides. Springer Science & Business Media, GermanyGoogle Scholar
  55. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRefGoogle Scholar
  56. Xu J, Wei Y, Huang Y, Wang J, Zheng X, Sun Z, Fan L, Wu J (2014) Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity. Ceram Int 40:10583–10591CrossRefGoogle Scholar
  57. Yang M, Huang X, Yan S, Li Z, Yu T, Zou Z (2010) Improved hydrogen evolution activities under visible light irradiation over NaTaO3 codoped with lanthanum and chromium. Mater Chem Phys 121(3):506–510CrossRefGoogle Scholar
  58. Zhang H, Chen G, Li Y, Teng Y (2010) Electronic structure and photocatalytic properties of copper-doped CaTiO3. Int J Hydrogen Energy 35(7):2713–2716CrossRefGoogle Scholar
  59. Zhang H, Chen G, He X, Xu J (2012) Electronic structure and photocatalytic properties of Ag–La codoped CaTiO3. J Alloy Comp 516:91–95CrossRefGoogle Scholar
  60. Zhang W, Zheng Y, Yu B, Wang J, Chen J (2017) Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell. Int J Hydrogen Energy 42:29911–29920CrossRefGoogle Scholar
  61. Zhou X, Shi J, Li C (2011) Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (Metal= Mn, Fe, and Co). J Phys Chem C 115(16):8305–8311CrossRefGoogle Scholar
  62. Zhu J, Chen J (2011) Perovskite-type oxides: synthesis and application in catalysis. ChemInform 42(21):319–343CrossRefGoogle Scholar
  63. Zou Z, Ye J, Arakawa H (2000) Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chem Phys Lett 332(3–4):271–277CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ping Feng Lim
    • 1
  • Kah Hon Leong
    • 1
    Email author
  • Lan Ching Sim
    • 1
  • Pichiah Saravanan
    • 2
  • Azrina Abd Aziz
    • 3
  1. 1.Department of Environmental EngineeringFaculty of Engineering and Green Technology, Universiti Tunku Abdul RahmanKamparMalaysia
  2. 2.Department of Environmental Science and EngineeringIndian Institute of Technology (ISM)JharkhandIndia
  3. 3.Faculty of EngineeringTechnology, Universiti Malaysia PahangKuantanMalaysia

Personalised recommendations