Advertisement

Nanomaterials and Their Applications in Bioimaging

  • Ruma Rani
  • Khushboo Sethi
  • Geeta SinghEmail author
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanomaterials have shown great potential in bioimaging, drug delivery, and targeted cancer therapies owing to their physicochemical properties and good biocompatibility. Among various clinical areas, bioimaging techniques based on nanomaterials have advanced very quickly with the development of nanoparticles with different functionalizations.

Modification/functionalization/conjugation makes nanomaterial a flawless candidate with controlled physicochemical, pharmacokinetic, pharmacological, and toxicological properties. Inorganic nanomaterials including gold nanoparticles, silica nanoparticles, magnetic nanoparticles, quantum dots, carbon nanotubes, fullerenes, and graphene become one of the most active research fields in biotechnology, biochemistry, and nano-biomedicine.

In this article, we summarized recent progress on various inorganic nanomaterials, including the background, synthesis, modification as well as their applications in the field of bioimaging with special reference to different bioimaging techniques such as magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), ultrasound imaging (USI), fluorescence imaging (FI), and photoacoustic imaging (PAI).

Keywords

Bioimaging Nanoparticles Quantum dots Carbon nanotubes Fullerenes Graphene 

References

  1. Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic nanostructures: environmental and agricultural applications. Springer International Publishing (ISBN 978-3-030-16438-6) https://www.springer.com/gp/book/9783030164386
  2. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(20):12617–12621PubMedCrossRefPubMedCentralGoogle Scholar
  3. Asl HM (2017) Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J Pharm 11:S7–S13Google Scholar
  4. Assimakopoulos A, Polyzoidis K, Sioka C (2014) Positron emission tomography imaging in gliomas. Neuroimmunol Neuroinflammation 1(3):107CrossRefGoogle Scholar
  5. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6(2):65–83CrossRefGoogle Scholar
  7. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764PubMedCrossRefPubMedCentralGoogle Scholar
  8. Blaszkiewicz P (1994) Synthesis of water-soluble ionic and nonionic iodinated X-Ray contrast-media. Invest Radiol 29:S51–S53PubMedCrossRefPubMedCentralGoogle Scholar
  9. Boretti A, Castelletto S (2016) Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks. Methods X 3:297–306Google Scholar
  10. Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C (2012) Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem 12:2694–2702PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  12. Cai WB, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676PubMedCrossRefGoogle Scholar
  13. Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42(12):797–806PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carvalho A, Martins MBF, Corvo ML, Feio G (2014) Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater Sci Eng C 43:521–526CrossRefGoogle Scholar
  15. Carvalho A, Gonçalves MC, Corvo ML, Martins MBF (2017) Development of new contrast agents for imaging function and metabolism by magnetic resonance imaging. Magn Reson Insights.  https://doi.org/10.1177/1178623X17722134CrossRefGoogle Scholar
  16. Chanda N, Shukla R, Zambre A, Mekapothula S, Kulkarni RR, Katti K, Bhattacharyya K, Fent GM, Casteel SW, Boote EJ, Viator JA (2011) An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells. Pharm Res 28(2):279–291PubMedCrossRefGoogle Scholar
  17. Cheheltani R, Ezzibdeh RM, Chhour P, Pulaparthi K, Kim J, Jurcova M, Hsu JC, Blundell C, Litt HI, Ferrari VA, Allcock R (2016) Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 102:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cherukula K, ManickavasagamLekshmi K, Uthaman S, Cho K, Cho CS, Park IK (2016) Multifunctionalinorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials 6(4):76PubMedCentralCrossRefPubMedGoogle Scholar
  19. Chhour P, Naha PC, O’Neill SM, Litt HI, Reilly MP, Ferrari VA, Cormode DP (2016) Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 87:93–103PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71CrossRefGoogle Scholar
  21. Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132(38):13270–13278PubMedCrossRefGoogle Scholar
  22. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 10(2):321–341PubMedCrossRefPubMedCentralGoogle Scholar
  23. Contado C, Ravani L, Passarella M (2013) Size characterization by sedimentation field flow fractionation of silica particles used as food additives. Anal Chim Acta 788:183–192PubMedCrossRefPubMedCentralGoogle Scholar
  24. Conversano F, Pisani P, Casciaro E, di Paola M, Leporatti S, Franchini R, Quarta A, Gigli G, Casciaro S (2016) Automatic echographic detection of halloysite clay nanotubes in a low concentration range. Nanomaterials 6:66PubMedCentralCrossRefPubMedGoogle Scholar
  25. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJ, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256(3):774–782PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52PubMedPubMedCentralCrossRefGoogle Scholar
  27. Crippa S, Salgarello M, Laiti S, Partelli S, Castelli P, Spinelli AE, Tamburrino D, Zamboni G, Falconi M (2014) The role of 18fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer. Dig Liver Dis 46(8):744–749CrossRefGoogle Scholar
  28. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779PubMedCrossRefGoogle Scholar
  29. Galperin A, Margel D, Baniel J, Dank G, Biton H, Margel S (2007) Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications. Biomaterials 28(30):4461–4468PubMedCrossRefGoogle Scholar
  30. Gao XH, Cui YY, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969PubMedCrossRefGoogle Scholar
  31. Gao XL, Chen J, Chen JY, Wu B, Chen H, Jiang X (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 19(11):2189–2195PubMedCrossRefGoogle Scholar
  32. Gao S, Wang G, Qin Z, Wang X, Zhao G, Ma Q, Zhu L (2017) Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials 112:324–335PubMedCrossRefGoogle Scholar
  33. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedCrossRefGoogle Scholar
  34. Grimmer T, Wutz C, Alexopoulos P, Drzezga A, Förster S, Förstl H, Goldhardt O, Ortner M, Sorg C, Kurz A (2016) Visual versus fully automated analyses of 18F-FDG and amyloid PET for prediction of dementia due to Alzheimer disease in mild cognitive impairment. J Nucl Med 57(2):204–207PubMedCrossRefGoogle Scholar
  35. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309–N315PubMedCrossRefGoogle Scholar
  36. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253PubMedCrossRefGoogle Scholar
  37. Hao Y, Zhang B, Zheng C, Ji R, Ren X, Guo F, Sun S, Shi J, Zhang H, Zhang Z, Wang L (2015) The tumor-targeting core–shell structured DTX-loaded PLGA@ Au nanoparticles for chemo-photothermal therapy and X-ray imaging. J Control Release 220:545–555PubMedCrossRefGoogle Scholar
  38. Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80(2):S160–S167PubMedCrossRefGoogle Scholar
  39. Hildebrandt N (2011) Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5(7):5286–5290PubMedCrossRefGoogle Scholar
  40. Horie S, Watanabe Y, Ono M, Mori S, Kodama T (2011) Evaluation of antitumor effects following tumor necrosis factor-α gene delivery using nanobubbles and ultrasound. Cancer Sci 102(11):2082–2089PubMedCrossRefGoogle Scholar
  41. Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391PubMedCrossRefGoogle Scholar
  42. Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Gd3+−functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun 44:5764–5766CrossRefGoogle Scholar
  43. Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821PubMedCrossRefGoogle Scholar
  44. Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magneticresonance imaging. Angew Chem Int Ed 47(28):5122–5135CrossRefGoogle Scholar
  45. Karmani L, Labar D, Valembois V, Bouchat V, Nagaswaran PG, Bol A, Gillart J, Levêque P, Bouzin C, Bonifazi D, Michiels C (2013) Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging 8(5):402–408PubMedCrossRefGoogle Scholar
  46. Kato T, Inui Y, Nakamura A, Ito K (2016) Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 30:73–84PubMedCrossRefGoogle Scholar
  47. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341PubMedCrossRefGoogle Scholar
  48. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665PubMedCrossRefGoogle Scholar
  49. Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4:688–694PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633PubMedCrossRefGoogle Scholar
  51. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354CrossRefGoogle Scholar
  52. Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH (2017) Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 46(1):158–196PubMedCrossRefGoogle Scholar
  53. Lai SM, Tsai TY, Hsu CY, Tsai JL, Liao MY, Lai PS (2012) Bifunctional silica-coated superparamagnetic FePt nanoparticles for fluorescence/MR dual imaging. J Nanomater 2012:5CrossRefGoogle Scholar
  54. Lanza GM, Wallace KD, Scott MJ, Cacheris WP, Abendschein DR, Christy DH, Sharkey AM, Miller JG, Gaffney PJ, Wickline SA (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94(12):3334–3340PubMedCrossRefGoogle Scholar
  55. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110PubMedCrossRefGoogle Scholar
  56. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95PubMedCrossRefGoogle Scholar
  57. Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, Shin K, Ahn TY, Choi JW, Kim YW, Choi SH (2012) Multifunctional Fe3O4/TaO x Core/Shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc 134(25):10309–10312PubMedCrossRefGoogle Scholar
  58. Li J, Cheng F, Huang H, Li L, Zhu JJ (2015) Nanomaterial-based activatable imaging probes: from design to biological applications. Chem Soc Rev 44(21):7855–7880PubMedCrossRefGoogle Scholar
  59. Liang S, Zhou Q, Wang M, Zhu Y, Wu Q, Yang X (2015) Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomed 10:2325CrossRefGoogle Scholar
  60. Lin J, Huang Y, Huang P (2018) Graphene-based nanomaterials in bioimaging. In: Biomedical applications of functionalized nanomaterials. Elsevier, pp 247–287Google Scholar
  61. Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F, Gätjens J (2011) Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32(26):6155–6163PubMedCrossRefPubMedCentralGoogle Scholar
  62. Ma DW, Kim JH, Jeon TJ, Lee YC, Yun M, Youn YH, Park H, Lee SI (2013) F-fluorodeoxyglucose positron emission tomography-computed tomography for the evaluation of bone metastasis in patients with gastric cancer. Dig Liver Dis 45(9):769–775PubMedCrossRefPubMedCentralGoogle Scholar
  63. Mahan MM, Doiron AL (2018) Gold nanoparticles as X-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J Nanomater.  https://doi.org/10.1155/2018/5837276CrossRefGoogle Scholar
  64. Marsh JN, Hall CS, Scott MJ, Fuhrhop RW, Gaffney PJ, Wickline SA, Lanza GM (2002) Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model. IEEE Trans Ultrason Ferroelectr Freq Control 49(1):29–38PubMedCrossRefPubMedCentralGoogle Scholar
  65. Martínez-González R, Estelrich J, Busquets MA (2016) Liposomes loaded with hydrophobic iron oxide nanoparticles: suitable T2 contrast agents for MRI. Int J Mol Sci 17(8):1209PubMedCentralCrossRefGoogle Scholar
  66. Martins MBA, Corvo ML, Marcelino P, Marinho HS, Feio G, Carvalho A (2014) New long circulating magnetoliposomes as contrast agents for detection of ischemia-reperfusion injuries by MRI. Nanomed Nanotechnol 10(1):207–214CrossRefGoogle Scholar
  67. Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’ko YK (2017) Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 5(33):6701–6727CrossRefGoogle Scholar
  68. Mattrey RF, Scheible FW, Gosink BB, Leopold GR, Long DM, Higgins CB (1982) Perfluoroctylbromide: aliver/spleen-specific and tumor-imaging ultrasound contrast material. Radiology 145(3):759–762PubMedCrossRefGoogle Scholar
  69. McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA (2007) PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2(9):e907PubMedPubMedCentralCrossRefGoogle Scholar
  70. Meltzer CC, Becker JT, Price JC, Moses-Kolko E (2003) Positron emission tomography imaging of the aging brain. Neuroimaging Clin 13(4):759–767CrossRefGoogle Scholar
  71. Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mosconi L, Berti V, Guyara-Quinn C, McHugh P, Petrongolo G, Osorio RS, Connaughty C, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ (2017) Perimenopause and emergence of an Alzheimer’s bioenergetic phenotype in brain and periphery. PLoS One 12(10):e0185926PubMedPubMedCentralCrossRefGoogle Scholar
  73. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557CrossRefGoogle Scholar
  74. Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715CrossRefGoogle Scholar
  75. Neumaier CE, Baio G, Ferrini S, Corte G, Daga A (2008) MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori J 94(2):226–233CrossRefGoogle Scholar
  76. Niccolini F, Su P, Politis M (2015) PET in multiple sclerosis. Clin Nucl Med 40(1):e46–e52PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  78. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33PubMedCrossRefPubMedCentralGoogle Scholar
  79. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core− shell fluorescent silica nanoparticles. Nano Lett 5(1):113–117PubMedCrossRefPubMedCentralGoogle Scholar
  80. Pan D, Schirra CO, Senpan A, Schmieder AH, Stacy AJ, Roessl E, Thran A, Wickline SA, Proska R, Lanza GM (2012) An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS nano 6(4):3364–3370PubMedPubMedCentralCrossRefGoogle Scholar
  81. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275CrossRefGoogle Scholar
  82. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pérez-Campaña C, Gómez-Vallejo V, Martin A, San Sebastián E, Moya SE, Reese T, Ziolo RF, Llop J (2012) Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst 137:4902–4906PubMedCrossRefPubMedCentralGoogle Scholar
  84. Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259(9):1769–1780PubMedCrossRefPubMedCentralGoogle Scholar
  85. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596PubMedPubMedCentralCrossRefGoogle Scholar
  86. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878PubMedCrossRefPubMedCentralGoogle Scholar
  87. Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado JL (2016) Simultaneous PET/MRI vs. PET/CT in oncology. A systematic review. Revista Española de Medicina Nucleare Imagen Molecular (English Edition) 35(5):306–312Google Scholar
  88. Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR (2010) Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine 5:783PubMedPubMedCentralGoogle Scholar
  89. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schulze E, Ferrucci JT, Poss K, Lapointe L, Bogdanova A, Weissleder R (1995) Cellular uptake and trafficking of a prototypical magnetic iron-oxide label in-vitro. Invest Radiol 30(10):604–610PubMedCrossRefGoogle Scholar
  91. Shevtsov M, Nikolaev B, Marchenko Y, Yakovleva L, Skvortsov N, Mazur A, Tolstoy P, Ryzhov V, Multhoff G (2018) Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomed 13:1471CrossRefGoogle Scholar
  92. Shi XY, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20(9):1671–1678CrossRefGoogle Scholar
  93. Shi P, Qu K, Wang J, Li M, Ren J, Qu X (2012) pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem Commun 48(61):7640–7642CrossRefGoogle Scholar
  94. Si-Mohamed S, Cormode DP, Bar-Ness D, Sigovan M, Naha PC, Langlois JB, Chalabreysse L, Coulon P, Blevis I, Roessl E, Erhard K (2017) Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo. Nanoscale 9(46):18246–18257PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265PubMedPubMedCentralCrossRefGoogle Scholar
  96. Szyszko TA, Cook GJR (2017) PET/CT and PET/MRI in head and neck malignancy. Clin Radiol.  https://doi.org/10.1016/j.crad.2017.09.001PubMedCrossRefGoogle Scholar
  97. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144PubMedCrossRefPubMedCentralGoogle Scholar
  98. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36PubMedCrossRefPubMedCentralGoogle Scholar
  99. Thomas R, Park IK, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930PubMedPubMedCentralCrossRefGoogle Scholar
  100. Thorek DL, Czupryna J, Chen AK, Tsourkas A (2008) Molecular imaging of cancer with superparamagnetic iron-oxide nanoparticles. In: Cancer imaging. Academic press, pp 85–95.Google Scholar
  101. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40(9):846–853PubMedCrossRefPubMedCentralGoogle Scholar
  102. van Schooneveld MM, Cormode DP, Koole R, van Wijngaarden JT, Calcagno C, Skajaa T, Hilhorst J, Hart DCT, Fayad ZA, Mulder WJ, Meijerink A (2010) A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media Mol Imaging 5(4):231–236PubMedPubMedCentralCrossRefGoogle Scholar
  103. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304PubMedCrossRefGoogle Scholar
  104. Vlasceanu G, Grumezescu AM, Gheorghe I, Chifiriuc MC, Holban AM (2017) Quantum dots for bioimaging and therapeutic applications. In: Nanostructures for novel therapy. Elsevier, pp 497–515Google Scholar
  105. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmüller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98(31):7665–7673CrossRefGoogle Scholar
  106. Wang SC, Xie Q, Lv WF (2014) Positron emission tomography/computed tomography imaging and rheumatoid arthritis. Int J Rheum Dis 17(3):248–255PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wang G, Zhang F, Tian R, Zhang L, Fu G, Yang L, Zhu L (2016) Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS Appl Mater Interfaces 8(8):5608–5617PubMedPubMedCentralCrossRefGoogle Scholar
  108. Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103(2):114–121PubMedCrossRefPubMedCentralGoogle Scholar
  109. Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171PubMedCrossRefPubMedCentralGoogle Scholar
  110. Weissleder R, Imhof H (2007) Molecular imaging – a new focal point of radiology. Der Radiologe 47(1):6–7PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wickline SA, Hughes M, Ngo FC, Hall CS, Marsh JN, Brown PA, Allen JS, McLean MD, Scott MJ, Fuhrhop RW, Lanza GM (2002) Blood contrast enhancement with a novel, non-gaseous nanoparticle contrast agent. Acad Radiol 9(suppl 2):S290–S293PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wu D, Huang L, Jiang MS, Jiang H (2014) Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci 15(12):23616–23639PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wu C, Li D, Wang L, Guan X, Tian Y, Yang H, Li S, Liu Y (2017) Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics. Acta Biomater 53:631–642PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R (2002a) Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn Reson Med 47(2):292–297PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wunderbaldinger P, Josephson L, Weissleder R (2002b) Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 9:S304–S306PubMedCrossRefPubMedCentralGoogle Scholar
  117. Xie H, Wang ZJ, Bao A, Goins B, Phillips WT (2010) In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 395:324–330PubMedCrossRefPubMedCentralGoogle Scholar
  118. Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L (2016) Funcional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103:219–228PubMedCrossRefPubMedCentralGoogle Scholar
  119. Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled Nanoparticles for multimodality tumorimaging. Theranostics 4:290–306PubMedPubMedCentralCrossRefGoogle Scholar
  120. Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, Zhang C (2014) Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomed 9:2527Google Scholar
  121. Yang H, Zhang J, Tian Q, Hu H, Fang Y, Wu H, Yang S (2010) One-pot synthesis of amphiphilic superparamagnetic Fe-Pt nanoparticles and magnetic resonance imaging in vitro. J Magn Magn Mater 322(8):973–977CrossRefGoogle Scholar
  122. Yang K, Wan J, Zhang S, Zhang Y, Lee ST (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522PubMedCrossRefPubMedCentralGoogle Scholar
  123. Yong KT (2009) Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20(1):015102PubMedCrossRefPubMedCentralGoogle Scholar
  124. Yu SB, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99(9):2353–2377PubMedCrossRefPubMedCentralGoogle Scholar
  125. Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Yakub BTK, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562PubMedCrossRefPubMedCentralGoogle Scholar
  126. Zhang WH, Hu XX, Zhang XB (2016) Dye-doped fluorescent silica nanoparticles for live cell and in vivo bioimaging. Nanomaterials 6:81PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICAR-National Research Centre on EquinesHisarIndia
  2. 2.Department of Biomedical EngineeringDeenbandhu Chhotu Ram University of Science and TechnologySonipatIndia

Personalised recommendations