Advertisement

Toxicity of Nanomaterials in Plants and Environment

  • Majid PeyraviEmail author
  • Mohsen Jahanshahi
  • Ali Bali Eslami
Chapter
  • 299 Downloads
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nowadays, due to the suitable properties of engineered nanomaterials (NMs), their use in the industries has expanded. The expansion of nanomaterials production will inevitably lead to its release into the environment. The presence of NMs in environment causes harmful effects on plants and aquatic life. Furthermore, engineered nanomaterials (ENMs) can interact with some environmental pollutants (e.g., metals and organic pollutants), which may consequence in a variation of the ecosystem behavior and toxicity of these pollutants. Plants include of a very vital living component of the earthly ecosystem. Research on the impact of ENMs on plant growth illustrated that in the extra content ENMs affect the seed germination.

This chapter presents an exact previous literature review about the toxicity of two groups of NMs such as (carbon based and metal/metal oxide) in plant as well as the effect of ENMs on the toxicity of environmental pollutants.

Keywords

Toxicity Carbon nanotube Seed germination Phytotoxicity Carbon nanomaterials 

References

  1. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-Ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162CrossRefGoogle Scholar
  2. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736PubMedCrossRefPubMedCentralGoogle Scholar
  3. Al-Ghamdi AA, Gupta R, Kahol P, Wageh S, Al-Turki Y, El Shirbeeny W, Yakuphanoglu F (2014) Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell. Solid State Commun 183:56–59CrossRefGoogle Scholar
  4. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178PubMedCrossRefPubMedCentralGoogle Scholar
  5. Anjum NA, Singh N, Singh MK, Shah ZA, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15:1770CrossRefGoogle Scholar
  6. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arora S, Sharma P, Kumar S, Nayan R, Khanna P, Zaidi M (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  8. Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:R15CrossRefGoogle Scholar
  9. Barbieri E, Campos-Garcia J, Martinez DS, Da Silva JRM, Alves OL, Rezende KF (2016) Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal 22:1162–1169PubMedCrossRefPubMedCentralGoogle Scholar
  10. Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37CrossRefGoogle Scholar
  11. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes--the route toward applications. Science 297:787–792PubMedCrossRefPubMedCentralGoogle Scholar
  12. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919CrossRefGoogle Scholar
  13. Belava V, Panyuta O, Yakovleva G, Pysmenna Y, Volkogon M (2017) The effect of silver and copper nanoparticles on the wheat—Pseudocercosporella herpotrichoides Pathosystem. Nanoscale Res Lett 12:250PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367PubMedCrossRefPubMedCentralGoogle Scholar
  15. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7:1121–1130PubMedCrossRefPubMedCentralGoogle Scholar
  17. Canesi L, Ciacci C, Balbi T (2015) Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe? Mar Environ Res 111:128–134PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen C, Dixon J, Turner F (1980) Iron coatings on Rice roots: morphology and models of development 1. Soil Sci Soc Am J 44:1113–1119CrossRefGoogle Scholar
  19. Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z (2015a) Proteomic analysis of copper-binding proteins in excess copper-stressed roots of two rice (Oryza sativa L.) varieties with different Cu tolerances. PLoS One 10:e0125367PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen J, Qian Y, Li H, Cheng Y, Zhao M (2015b) The reduced bioavailability of copper by nano-TiO 2 attenuates the toxicity to Microcystis aeruginosa. Environ Sci Pollut Res 22:12407–12414CrossRefGoogle Scholar
  21. Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115:4425–4432CrossRefGoogle Scholar
  22. Cheng F, Liu Y-F, Lu G-Y, Zhang X-K, Xie L-L, Yuan C-F, Xu B-B (2016) Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J Plant Physiol 193:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120CrossRefGoogle Scholar
  24. Clarke B, Brennan E (1989) Differential cadmium accumulation and phytotoxicity in sixteen tobacco cultivars. JAPCA 39:1319–1322CrossRefGoogle Scholar
  25. Cui X, Wan B, Guo L-H, Yang Y, Ren X (2016) Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: role of P2X7 receptor. Environ Sci Technol 50:12473–12483PubMedCrossRefPubMedCentralGoogle Scholar
  26. D’alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12:4979–4997PubMedCrossRefPubMedCentralGoogle Scholar
  27. Da Costa M, Sharma P (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  28. Dai H, Cao F, Chen X, Zhang M, Ahmed IM, Chen Z-H, Li C, Zhang G, Wu F (2013) Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PLoS One 8:e63428PubMedPubMedCentralCrossRefGoogle Scholar
  29. De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547PubMedCrossRefPubMedCentralGoogle Scholar
  30. Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B (2017) Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11:591–612PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dimkpa CO, Mclean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090PubMedCrossRefPubMedCentralGoogle Scholar
  32. Duressa D, Soliman K, Chen D (2010) Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. Int J Plant Genomics 2010:164862PubMedPubMedCentralCrossRefGoogle Scholar
  33. Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress. Int J Plant Genomics 2011:282531PubMedPubMedCentralCrossRefGoogle Scholar
  34. Elghniji K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M (2012) Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: kinetics, intermediates, phytotoxicity and acute toxicity. J Environ Sci 24:479–487CrossRefGoogle Scholar
  35. Fageria N, Carvalho J (1982) Influence of aluminum in nutrient solutions on chemical composition in upland rice cultivars. Plant Soil 69:31–44CrossRefGoogle Scholar
  36. Fang L, Borggaard OK, Holm PE, Hansen HCB, Cedergreen N (2011) Toxicity and uptake of TRI-and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal. Environ Toxicol Chem 30:2553–2561PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fang Q, Shi X, Zhang L, Wang Q, Wang X, Guo Y, Zhou B (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904PubMedCrossRefGoogle Scholar
  38. Feizi H, Amirmoradi S, Abdollahi F, Pour SJ (2013) Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Ann Rev Res Biol 3:814–824Google Scholar
  39. Feretti D, Zerbini I, Zani C, Ceretti E, Moretti M, Monarca S (2007) Allium cepa chromosome aberration and micronucleus tests applied to study genotoxicity of extracts from pesticide-treated vegetables and grapes. Food Addit Contam 24:561–572PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ferguson EA, Hogstrand C (1998) Acute silver toxicity to seawater-acclimated rainbow trout: influence of salinity on toxicity and silver speciation. Environ Toxicol Chem 17:589–593CrossRefGoogle Scholar
  41. Foltete A-S, Masfaraud J-F, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Ferard J-F, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522PubMedCrossRefPubMedCentralGoogle Scholar
  42. Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959–987CrossRefGoogle Scholar
  43. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893.  https://doi.org/10.1104/pp.110.169730CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO 2 treatment related to the changes of Rubisco activase? Biometals 21:211–217PubMedCrossRefGoogle Scholar
  46. Gardea-Torresdey J, Tiemann K, Gamez G, Dokken K, Cano-Aguilera I, Furenlid LR, Renner MW (2000) Reduction and accumulation of gold (III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396PubMedPubMedCentralCrossRefGoogle Scholar
  47. Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM (2016) Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol 50:2660–2668PubMedCrossRefPubMedCentralGoogle Scholar
  48. Goodman CM, Mccusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900PubMedCrossRefPubMedCentralGoogle Scholar
  49. Green S, Renault S (2008) Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: a greenhouse study. Environ Pollut 151:524–531PubMedCrossRefPubMedCentralGoogle Scholar
  50. Groppa M, Rosales E, Iannone M, Benavides M (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615PubMedCrossRefPubMedCentralGoogle Scholar
  51. Guo D, Wu C, Song W, Jiang H, Wang X, Chen B (2009) Effect of colloidal gold nanoparticles on cell interface and their enhanced intracellular uptake of arsenic trioxide in leukemia cancer cells. J Nanosci Nanotechnol 9:4611–4617PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gutierrez-Carbonell E, Lattanzio G, Sagardoy R, Rodríguez-Celma J, Ruiz JJR, Matros A, Abadía A, Abadía J, López-Millán A-F (2013) Changes induced by zinc toxicity in the 2-DE protein profile of sugar beet roots. J Proteome 94:149–161CrossRefGoogle Scholar
  53. Han T, Fan T, Chow S-K, Zhang D (2010) Biogenic N–P-codoped TiO2: synthesis, characterization and photocatalytic properties. Bioresour Technol 101:6829–6835PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hashimoto Y, Takeuchi S, Mitsunobu S, Ok Y-S (2017) Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag. J Hazard Mater 322:318–324PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hego E, Bes CM, Bedon F, Palagi PM, Chaumeil P, Barre A, Claverol S, Dupuy JW, Bonneu M, Lalanne C (2014) Differential accumulation of soluble proteins in roots of metallicolous and nonmetallicolous populations of Agrostis capillaris L. exposed to Cu. Proteomics 14:1746–1758PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hopff D, Wienkoop S, Luthje S (2013) The plasma membrane proteome of maize roots grown under low and high iron conditions. J Proteome 91:605–618CrossRefGoogle Scholar
  58. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res 13:225–232CrossRefGoogle Scholar
  59. Inokuchi R, Itagaki T, Wiskich JT, Nakayama K, Okada M (1997) An NADP-glutamate dehydrogenase from the green alga Bryopsis maxima. Purification and properties. Plant Cell Physiol 38:327–335PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jang H, Pell LE, Korgel BA, English DS (2003) Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. J Photochem Photobiol A Chem 158:111–117CrossRefGoogle Scholar
  61. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jiang X, Luo Y, Zhao Q, Baker A, Christie P, Wong M (2003) Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50:813–818PubMedCrossRefPubMedCentralGoogle Scholar
  63. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346PubMedCrossRefGoogle Scholar
  64. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414PubMedCrossRefPubMedCentralGoogle Scholar
  65. Justin S, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol 118:49–62CrossRefGoogle Scholar
  66. Karamushka VI, Gadd GM (1999) Interaction of Saccharomyces cerevisiae with gold: toxicity and accumulation. Biometals 12:289–294PubMedCrossRefPubMedCentralGoogle Scholar
  67. Karmous I, Chaoui A, Jaouani K, Sheehan D, El Ferjani E, Scoccianti V, Crinelli R (2014) Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiol Biochem 76:77–85PubMedCrossRefPubMedCentralGoogle Scholar
  68. Karuppanapandian T, Rhee S, Kim E, Han B, Hoekenga O, Lee G (2012) Proteomic analysis of differentially expressed proteins in the roots of Columbia-0 and Landsberg erecta ecotypes of Arabidopsis thaliana in response to aluminum toxicity. Can J Plant Sci 92:1267–1282CrossRefGoogle Scholar
  69. Kashem MA, Kawai S (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci Plant Nutr 53:246–251CrossRefGoogle Scholar
  70. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51PubMedCrossRefPubMedCentralGoogle Scholar
  71. Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155PubMedCrossRefPubMedCentralGoogle Scholar
  72. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kim BS (2013) Biological synthesis of nanomaterials using plant leaf extracts. Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference on, 2013. IEEE, pp 1204–1207Google Scholar
  74. Kim I, Lee B-T, Kim H-A, Kim K-W, Kim SD, Hwang Y-S (2016) Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRefGoogle Scholar
  79. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18CrossRefGoogle Scholar
  80. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lee G, Kim BS (2014) Biological reduction of graphene oxide using plant leaf extracts. Biotechnol Prog 30:463–469PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lee D-Y, Fortin C, Campbell PG (2005) Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquat Toxicol 75:127–135PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li L, Sillanpää M, Schultz E (2017) Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna. J Nanopart Res 19:223CrossRefGoogle Scholar
  86. Liu W, Zhu Y, Hu Y, Williams P, Gault A, Meharg AA, Charnock J, Smith F (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J (2013) An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 8:e64041PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liu T, Shen C, Wang Y, Huang C, Shi J (2014) New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress. PLoS One 9:e109573PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu R, Zhang H, Lal R (2016a) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42CrossRefGoogle Scholar
  90. Liu S, Jiang W, Wu B, Yu J, Yu H, Zhang X-X, Torres-Duarte C, Cherr GN (2016b) Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology 10:597–606PubMedCrossRefPubMedCentralGoogle Scholar
  91. Liu Y, Wang X, Wang J, Nie Y, Du H, Dai H, Wang J, Wang M, Chen S, Hei TK (2016c) Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ Sci Technol 50:3154–3164PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 97:46–51PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143PubMedCrossRefPubMedCentralGoogle Scholar
  95. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91PubMedPubMedCentralCrossRefGoogle Scholar
  96. Martinez D, Alves O, Barbieri E (2013) Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser. IOP Publishing, 012043Google Scholar
  97. Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23:1732–1741CrossRefGoogle Scholar
  98. Mcgehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV (2017) Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl Mater Interfaces 9:32430–32435PubMedCrossRefPubMedCentralGoogle Scholar
  99. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13PubMedPubMedCentralCrossRefGoogle Scholar
  100. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mogharabi M, Abdollahi M, Faramarzi MA (2014) Safety concerns to application of graphene compounds in pharmacy and medicine. Bio Med Central 22:23–30Google Scholar
  102. Moisala A, Nasibulin AG, Kauppinen EI (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J Phys Condens Matter 15:S3011CrossRefGoogle Scholar
  103. Molina-Barahona L, Vega-Loyo L, Guerrero M, Ramirez S, Romero I, Vega-Jarquín C, Albores A (2005) Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process. Environ Toxicol Int J 20:100–109CrossRefGoogle Scholar
  104. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  105. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593PubMedCrossRefPubMedCentralGoogle Scholar
  107. Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800PubMedCrossRefPubMedCentralGoogle Scholar
  108. Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol-Gel Sci Technol 40:259–266CrossRefGoogle Scholar
  109. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefPubMedCentralGoogle Scholar
  110. Nunes SM, Josende ME, Ruas CP, Gelesky MA, Da Silva Júnior FMR, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2017) Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology 376:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  111. Oh MW, Roy SK, Kamal AHM, Cho K, Cho S-W, Park C-S, Choi J-S, Komatsu S, Woo S-H (2014) Proteome analysis of roots of wheat seedlings under aluminum stress. Mol Biol Rep 41:671–681PubMedCrossRefPubMedCentralGoogle Scholar
  112. Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42CrossRefGoogle Scholar
  113. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135PubMedCrossRefPubMedCentralGoogle Scholar
  114. Perreault F, Bogdan N, Morin M, Claverie J, Popovic R (2012) Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology 6:109–120PubMedCrossRefPubMedCentralGoogle Scholar
  115. Petersen EJ, Pinto RA, Landrum PF, Weber J, Walter J (2009) Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43:4181–4187PubMedCrossRefPubMedCentralGoogle Scholar
  116. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  117. Qiu Z, Yang Q, Liu W (2013) Photocatalytic degradation of phytotoxic substances in waste nutrient solution by various immobilized levels of nano-TiO 2. Water Air Soil Pollut 224:1461CrossRefGoogle Scholar
  118. Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J Exp Bot 58:3895–3904PubMedCrossRefPubMedCentralGoogle Scholar
  119. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  120. Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:279–287CrossRefGoogle Scholar
  121. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518PubMedCrossRefPubMedCentralGoogle Scholar
  122. Roh J-Y, Sim SJ, Yi J, Park K, Chung KH, Ryu D-Y, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940PubMedCrossRefPubMedCentralGoogle Scholar
  123. Romeo S, Trupiano D, Ariani A, Renzone G, Scippa GS, Scaloni A, Sebastiani L (2014) Proteomic analysis of Populus× euramericana (clone I-214) roots to identify key factors involved in zinc stress response. J Plant Physiol 171:1054–1063PubMedCrossRefPubMedCentralGoogle Scholar
  124. Rosenfeldt RR, Seitz F, Senn L, Schilde C, Schulz R, Bundschuh M (2015) Nanosized titanium dioxide reduces copper toxicity – the role of organic material and the crystalline phase. Environ Sci Technol 49:1815–1822PubMedCrossRefPubMedCentralGoogle Scholar
  125. Saison C, Perreault F, Daigle J-C, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114PubMedCrossRefPubMedCentralGoogle Scholar
  126. Santos SM, Dinis AM, Rodrigues DM, Peixoto F, Videira RA, Jurado AS (2013) Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. Aquat Toxicol 142:347–354PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sasidharan A, Panchakarla L, Chandran P, Menon D, Nair S, Rao C, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464PubMedCrossRefPubMedCentralGoogle Scholar
  128. Saxena A, Tripathi R, Singh R (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5:427–432Google Scholar
  129. Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S (2013) A proteomics approach to investigate the process of Z n hyperaccumulation in N occaea caerulescens (J & C. P resl) FK M eyer. Plant J 73:131–142PubMedCrossRefPubMedCentralGoogle Scholar
  130. Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO 2 nanoparticles to willow trees. J Soils Sediments 9:46–53CrossRefGoogle Scholar
  131. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2010) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499PubMedCrossRefPubMedCentralGoogle Scholar
  132. Slade S, Pegg G (1993) The effect of silver and other metal ions on the in vitro growth of root-rotting Phytophthora and other fungal species. Ann Appl Biol 122:233–251CrossRefGoogle Scholar
  133. Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  134. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  135. Tan L-Y, Huang B, Xu S, Wei Z-B, Yang L-Y, Miao A-J (2016) Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna. Environ Sci Technol 51:932–939PubMedCrossRefPubMedCentralGoogle Scholar
  136. Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331PubMedCrossRefPubMedCentralGoogle Scholar
  137. Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12PubMedCrossRefPubMedCentralGoogle Scholar
  138. Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ Sci Technol 46:6915–6924PubMedCrossRefPubMedCentralGoogle Scholar
  139. Valle SR, Carrasco J, Pinochet D, Calderini DF (2009) Grain yield, above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions. Plant Soil 318:299–310CrossRefGoogle Scholar
  140. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206CrossRefGoogle Scholar
  141. Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501PubMedPubMedCentralCrossRefGoogle Scholar
  142. Von Uexkull H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15CrossRefGoogle Scholar
  143. Wagner PA, Hoekstra WG, Ganther HE (1975) Alleviation of silver toxicity by selenite in the rat in relation to tissue glutathione peroxidase. Proc Soc Exp Biol Med 148:1106–1110PubMedCrossRefPubMedCentralGoogle Scholar
  144. Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820PubMedCrossRefPubMedCentralGoogle Scholar
  145. Wang F, Shang Y, Yang L, Zhu C (2012) Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress. J Environ Sci 24:2149–2158CrossRefGoogle Scholar
  146. Wang CY, Shen RF, Wang C, Wang W (2013) Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. J Proteome 78:281–293CrossRefGoogle Scholar
  147. Wang X, Qu R, Allam AA, Ajarem J, Wei Z, Wang Z (2016a) Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS (III) and AS (V)] to Daphnia magna: the role of certain arsenic species. Environ Toxicol Chem 35:1852–1859PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wang X, Qu R, Liu J, Wei Z, Wang L, Yang S, Huang Q, Wang Z (2016b) Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: the role of catalyst impurities and adsorption capacity. Environ Pollut 208:732–738PubMedCrossRefPubMedCentralGoogle Scholar
  149. Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016c) Corrigendum: zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front Plant Sci 7:559PubMedPubMedCentralGoogle Scholar
  150. Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A (2017) Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 11:978–995PubMedCrossRefPubMedCentralGoogle Scholar
  151. Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wood CM, Hogstrand C, Galvez F, Munger R (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat Toxicol 35:93–109CrossRefGoogle Scholar
  153. Worms IA, Boltzman J, Garcia M, Slaveykova VI (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  154. Wu S, Huang L, Head J, Chen D, Kong I-C, Tang Y (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126Google Scholar
  155. Xie W, Wang H, Li H (2011) Silica-supported tin oxides as heterogeneous acid catalysts for transesterification of soybean oil with methanol. Ind Eng Chem Res 51:225–231CrossRefGoogle Scholar
  156. Xu C, Garrett WM, Sullivan J, Caperna TJ, Natarajan S (2006) Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry. Phytochemistry 67:2431–2440PubMedCrossRefPubMedCentralGoogle Scholar
  157. Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29:595–615PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yan C, Yang F, Wang Z, Wang Q, Seitz F, Luo Z (2017) Changes in arsenate bioaccumulation, subcellular distribution, depuration, and toxicity in Artemia salina nauplii in the presence of titanium dioxide nanoparticles. Environ Sci Nano 4:1365–1376CrossRefGoogle Scholar
  159. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008PubMedCrossRefPubMedCentralGoogle Scholar
  160. Yang W-W, Li Y, Miao A-J, Yang L-Y (2012) Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51PubMedCrossRefPubMedCentralGoogle Scholar
  161. Ye X, Gu Y, Wang C (2012) Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sensors Actuators B Chem 173:530–539CrossRefGoogle Scholar
  162. Yin L, Colman BP, Mcgill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zargar SM, Kurata R, Inaba S, Oikawa A, Fukui R, Ogata Y, Agrawal GK, Rakwal R, Fukao Y (2015) Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross-talk between excess zinc and iron deficiency. Proteomics 15:1196–1201PubMedCrossRefPubMedCentralGoogle Scholar
  164. Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 240:291–308PubMedCrossRefPubMedCentralGoogle Scholar
  165. Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhang S, Deng R, Lin D, Wu F (2017) Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology 11:1115–1126PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zhen Y, Qi JL, Wang SS, Su J, Xu GH, Zhang MS, Miao L, Peng XX, Tian D, Yang YH (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554PubMedCrossRefPubMedCentralGoogle Scholar
  168. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefGoogle Scholar
  169. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Majid Peyravi
    • 1
    • 2
    Email author
  • Mohsen Jahanshahi
    • 1
  • Ali Bali Eslami
    • 1
  1. 1.Department of Chemical Engineering, Babol Noshirvani University of TechnologyBabolIran
  2. 2.Nanotechnology Research Institute, Babol Noshirvani University of TechnologyBabolIran

Personalised recommendations