Advertisement

Carbon Dots Synthesized from Green Precursors with an Amplified Photoluminescence: Synthesis, Characterization, and Its Application

  • Lan Ching SimEmail author
  • Jun Yan Tai
  • Jia Min Khor
  • Jing Lin Wong
  • Jie Yet Lee
  • Kah Hon Leong
  • Pichiah Saravanan
  • Azrina Abd Aziz
Chapter
  • 319 Downloads
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The carbon dots (CDs) are widely applied in the field of bioimaging and sensing owing to their high photoluminescence, biocompatibility, small size (<10 nm), and low toxicity. Besides, CDs also possess the upconversion PL (UCPL) properties and are able to harvest long wavelength light. These properties help them in the photocatalytic degradation of organic pollutants when irradiated by natural sunlight. Nevertheless, the reported preparation method of CDs has met several limitations, such as limited spectral efficiency, low product yield, lack of size control, the use of toxic chemicals, and high temperature for experiments. For this reason, using green precursors to produce CDs such as orange juice, soy milk, chitosan, and orange waste peels caught numerous researchers’ attention. Abundant green precursors could be potentially used as a carbon source to produce value-added CDs. This book chapter will focus on the synthesis and characterization of carbon dots synthesized from green precursors via sustainable method. We will also report the application of carbon dots for the bioimaging, sensing, photocatalysis, and biomedicine.

Keywords

Carbon dots Photocatalysis Bioimaging Biomedicine 

References

  1. Alam A, Park BY, Ghouri ZK, Park M, Kim HY (2015) Synthesis of carbon quantum dot from cabbage with down and up-conversion photoluminescence properties: excellent imaging agent for biomedical application. Green Chem 17:3791–3797CrossRefGoogle Scholar
  2. Angamuthu R, Palanisamy P, Vasudevan V, Nagarajan S, Rajendran R, Vairamuthu R (2018) Quick synthesis of 2-propanol derived fluorescent carbon dots for bioimaging applications. Opt Mater 78:477–483CrossRefGoogle Scholar
  3. Anmei S, Qingmei Z, Yuye C, Yilin W (2018) Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal Chim Acta 1023:115–120PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150CrossRefGoogle Scholar
  5. Arumugam N, Kim J (2018) Synthesis of carbon quantum dots from broccoli and their ability to detect silver ions. Mater Lett 219:37–40CrossRefGoogle Scholar
  6. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  7. Bandi R, Gangapuram BR, Dadigala R, Eslavath R, Singh SS, Guttena V (2016) Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv 6:28633–28639CrossRefGoogle Scholar
  8. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, Qi B, Pang DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin T (2006) Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B 110:831–836PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cachier H, Bremond MP, Buat-Ménard P (1989) Determination of atmospheric soot carbon with a simple thermal method. Tellus B 41:379–390CrossRefGoogle Scholar
  11. Cao L, Yang ST, Wang X, Luo PG, Liu JH, Sahu S, Liu Y, Sun YP (2012) Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2:295PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao LI, Meziani MJ, Sahu S, Sun YP (2012a) Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 46:171–180PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv 2:3602–3606CrossRefGoogle Scholar
  14. Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, Park SY, In I (2017) Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Ind Eng Chem Res 47:329–335CrossRefGoogle Scholar
  15. D’souza SL, Deshmukh B, Rawat KA, Bhamore JR, Lenka N, Kailasa SK (2016) Fluorescent carbon dots derived from vancomycin for flutamide drug delivery and cell imaging. New J Chem 40:7075–7083CrossRefGoogle Scholar
  16. D’souza SL, Chettiar SS, Koduru JR, Kailasa SK (2018) Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik 158:893–900CrossRefGoogle Scholar
  17. De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3:8286–8290CrossRefGoogle Scholar
  18. Demchenko AP, Dekaliuk MO (2013) Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc 1:042001PubMedCrossRefPubMedCentralGoogle Scholar
  19. Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, Tan L, Xie Q, Zhang Y, Yao S (2014) Electrochemical synthesis of carbon nanodots directly from alcohols. Chem Eur J 20:4993–4999PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ding H, Ji Y, Wei JS, Gao QY, Zhou ZY, Xiong HM (2017) Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B 5:5272–5277CrossRefGoogle Scholar
  21. Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22:5895–5899CrossRefGoogle Scholar
  22. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804CrossRefGoogle Scholar
  23. Du FY, Zhang MM, Li XF, Li JN, Jiang XY, Li Z, Hua Y, Shao GB, Jin J, Shao QX, Zhou M, Gong AH (2014) Economical and green synthesis of bagasse derived fluorescent carbon dots for biomedical applications. Nanotechnology 25:315702–315712PubMedCrossRefPubMedCentralGoogle Scholar
  24. Essner JB, Laber CH, Ravula S, Polo-Parada L, Baker GA (2016) Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem 18:243–250CrossRefGoogle Scholar
  25. Fadllan A, Marwoto P, Aji MP, Susanto, Iswari RS (2017) Synthesis of carbon nanodots from waste paper with hydrothermal method. AIP Publishing 1788:030069Google Scholar
  26. Fan RJ, Sun Q, Zhang L, Zhang Y, Lu AH (2014) Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 71:87–93CrossRefGoogle Scholar
  27. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10:4410–4420PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gonçalves H, Jorge PA, Fernandes JRA, da Silva JCE (2010) Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensors Actuators B Chem 145:702–707CrossRefGoogle Scholar
  29. Gondal MA, Qahtan TF, Dastageer MA, Saleh TA, Maganda YW, Anjum DH (2013) Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation. Appl Surf Sci 286:149–155CrossRefGoogle Scholar
  30. Guo YM, Zhang LF, Cao FP, Leng YM (2016) Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci Rep 6:35795PubMedPubMedCentralCrossRefGoogle Scholar
  31. Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y (2017) Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Mater Sci Eng C 84:60–66CrossRefGoogle Scholar
  32. Han M, Zhu S, Lu S, Song Y, Feng T, Tao S, Liu J, Yang B (2018) Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today 19:201–208CrossRefGoogle Scholar
  33. Hossain MA, Islam S (2013) Synthesis of carbon nanoparticles from kerosene and their characterization by SEM/EDX, XRD and FTIR. J Nanosci Nanotechnol 1:52–56Google Scholar
  34. Hou Y, Lu Q, Deng J, Li H, Zhang Y (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74PubMedCrossRefGoogle Scholar
  35. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828PubMedCrossRefGoogle Scholar
  36. Hu S, Chang Q, Lin K, Yang J (2016) Tailoring surface charge distribution of carbon dots through heteroatoms for enhanced visible-light photocatalytic activity. Carbon 105:484–489CrossRefGoogle Scholar
  37. Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, Feng JJ (2013) One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 3:21691–21696CrossRefGoogle Scholar
  38. Jaleel JA, Pramod K (2017) Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 269:302–321PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jelinek R (2017) Carbon quantum dots: synthesis, properties and applications. Springer International Publishing AG, ChamCrossRefGoogle Scholar
  40. Ju E, Liu Z, Du Y, Tao Y, Ren J, Qu X (2014) Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo. ACS Nano 8:6014–6023PubMedCrossRefGoogle Scholar
  41. Jia Zhang, Shu-Hong (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19(7):382–393CrossRefGoogle Scholar
  42. Kasibabu BSB, D’souza SL, Jha S, Kailasa SK (2015) Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from Carica Papaya juice. J Fluoresc 25:803–810PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kazemizadeh F, Malekfar R, Parvin P (2017) Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J Phys Chem Solids 104:252–256CrossRefGoogle Scholar
  44. Kshirsagar A, Khanna T, Khanna P, Dhanwe V, Khanna PK (2017) Flame deposition method for carbon nanoparticles employing green precursors and its composite with Au nanoparticles for photocatalytic degradation of methylene blue. Vacuum 146:633–640CrossRefGoogle Scholar
  45. Kumar A, Ray A, Laha D, Kumar T, Karmakar P, Kumar S (2017) Chemical green synthesis of carbon dots from Ocimum Sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators B Chem 242:679–686CrossRefGoogle Scholar
  46. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434CrossRefGoogle Scholar
  47. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47:932–934CrossRefGoogle Scholar
  48. Li W, Yue Z, Wang C, Zhang W, Liu G (2013) An absolutely green approach to fabricate carbon nanodots from soya bean grounds. RSC Adv 3:20662–20665CrossRefGoogle Scholar
  49. Li C, Liu W, Sun X, Pan W, Wang J (2017) Multi sensing functions integrated into one carbon-dot based platform via different types of mechanisms. Sensors Actuators B Chem 252:544–553CrossRefGoogle Scholar
  50. Liang F, Tanaka M, Choi S, Watanabe T (2017) Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon 117:100–111CrossRefGoogle Scholar
  51. Liao J, Cheng Z, Zhou L (2016) Nitrogen-doping enhanced fluorescent carbon dots: green synthesis and their applications for bioimaging and label-free detection of Au3+ ions. ACS Sustain Chem Eng 4:3053–3061CrossRefGoogle Scholar
  52. Lim S, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lin PY, Hsieh CW, Kung ML, Chu LY, Huang HJ, Chen HT, Wu DC, Kuo CH, Hsieh SL, Hsieh S (2014) Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging. J Biotechnol 189:114–119PubMedCrossRefGoogle Scholar
  54. Liu S, Tian JQ, Wang L, Zhang YW, Qin XY, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041PubMedCrossRefPubMedCentralGoogle Scholar
  55. Liu X, Pang J, Xu F, Zhang X (2016) Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep 6:31100PubMedPubMedCentralCrossRefGoogle Scholar
  56. Liu F, Zhang W, Chen W, Wang J, Yang Q, Zhu W, Wang J (2017) One-pot synthesis of NiFe2O4 integrated with EDTA-derived carbon dots for enhanced removal of tetracycline. Chem Eng J 310:187–196CrossRefGoogle Scholar
  57. Liu W, Diao H, Chang H, Wang H, Li T, Wei W (2017a) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem 241:190–198CrossRefGoogle Scholar
  58. Lu WB, Qin XY, Liu S, Chang GH, Zhang YW, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2013) Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury (II) ions. J Nanopart Res 15:1344CrossRefGoogle Scholar
  60. Lu KQ, Quan Q, Zhang N, Xu YJ (2016) Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. J Energy Chem 25:927–935CrossRefGoogle Scholar
  61. Luo Z, Vora PM, Mele EJ, Johnson AC, Kikkawa JM (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94:111909CrossRefGoogle Scholar
  62. Ma Z, Ming H, Huang H, Liu Y, Kang Z (2012) One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 36:861–864CrossRefGoogle Scholar
  63. Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’ko YK (2017) Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 5:6701–6727CrossRefGoogle Scholar
  64. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20–27CrossRefGoogle Scholar
  65. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors Actuators B Chem 213:434–443CrossRefGoogle Scholar
  66. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91:1–8CrossRefGoogle Scholar
  67. Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531PubMedCrossRefGoogle Scholar
  68. Mumei Han, Liping Wang, Siheng Li, Liang Bai, Yunjie Zhou, Yue Sun, Hui Huang, Hao Li, Yang Liu, Zhenhui Kang (2017) High-bright fluorescent carbon dot as versatile sensing platform. Talanta 174:265–273PubMedCrossRefPubMedCentralGoogle Scholar
  69. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots : an updated review. Biomed Pharmacother 87:209–222PubMedCrossRefGoogle Scholar
  70. Nersisyan HH, Lee JH, Ding JR, Kim KS, Manukyan KV, Mukasyan AS (2017) Combustion synthesis of zero-, one-, two-and three-dimensional nanostructures: current trends and future perspectives. Prog Energy Combust Sci 63:79–118CrossRefGoogle Scholar
  71. Pandey S, Shah R, Mewada A, Thakur M, Oza G, Sharon M (2013) Gold nanorods mediated controlled release of doxorubicin: nano-needles for efficient drug delivery. J Mater Sci Mater Med 24:1671–1681PubMedCrossRefGoogle Scholar
  72. Park SY, Lee HU, Park ES, Lee SC, Lee JW, Jeong SW, Kim CH, Lee YC, Huh YS, Lee J (2014) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370PubMedCrossRefPubMedCentralGoogle Scholar
  73. Peng Z, Han X, Li S, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM (2017) Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 343:256–277CrossRefGoogle Scholar
  74. Pham-Truong TN, Petenzi T, Ranjan C, Randriamahazaka H, Ghilane J (2018) Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide. Carbon 130:544–552CrossRefGoogle Scholar
  75. Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678CrossRefGoogle Scholar
  76. Qin XY, Lu WB, Asiri AM, Al-Youbi AO, Sun XP (2012) Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles/reduced graphene oxide nanocomposites for glucose detection. Cat Sci Technol 3:1027–1035CrossRefGoogle Scholar
  77. Rahy A, Zhou C, Zheng J, Park SY, Kim MJ, Jang I, Cho SJ, Yang DJ (2012) Photoluminescent carbon nanoparticles produced by confined combustion of aromatic compounds. Carbon 50:1298–1302CrossRefGoogle Scholar
  78. Ramanan V, Thiyagarajan SK, Raji K, Suresh R, Sekar R, Ramamurthy P (2016) Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain Chem Eng 4:4724–4731CrossRefGoogle Scholar
  79. Roshni V, Praveen OD (2017) Fluorescent N-doped Carbon Dots from Mustard Seeds: One step Green Synthesis and its Application as an effective Hg (II) Sensor. Braz J Anal Chem 4(14):17–24Google Scholar
  80. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140:4260–4269PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sachdev A, Matai I, Kumar SU, Bhushan B, Dubey P, Gopinath P (2013) A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application. RSC Adv 3:16958–16961CrossRefGoogle Scholar
  82. Sachdev A, Matai I, Gopinath P (2014) Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv 4:20915–20921CrossRefGoogle Scholar
  83. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837CrossRefGoogle Scholar
  84. Schneider J, Reckmeier CJ, Xiong Y, von Seckendorff M, Susha AS, Kasák P, Rogach AL (2017) Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C 121:2014–2022CrossRefGoogle Scholar
  85. Shahidi S, Rashidian M, Dorranian D (2018) Preparation of antibacterial textile using laser ablation method. Opt Laser Technol 99:145–153CrossRefGoogle Scholar
  86. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924CrossRefGoogle Scholar
  87. Shen LM, Liu J (2016) New development in carbon quantum dots technical applications. Talanta 156-157:245–256PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P (2018) Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation. Beilstein J Nanotechnol 9:353–363PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2:6954–6960CrossRefGoogle Scholar
  90. Štěpánková S, Kozák O, Zbořil R (2015) Surfactant-based fluorescent quantum carbon dots: synthesis and application. Adv Mater Res 1088:381–385CrossRefGoogle Scholar
  91. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. Trends Anal Chem 89:163–180CrossRefGoogle Scholar
  92. Sun YP, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757PubMedCrossRefPubMedCentralGoogle Scholar
  93. Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434CrossRefGoogle Scholar
  94. Sun DL, Hong RY, Wang F, Liu JY, Kumar MR (2016) Synthesis and modification of carbon nanomaterials via AC arc and dielectric barrier discharge plasma. Chem Eng J 283:9–20CrossRefGoogle Scholar
  95. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809CrossRefGoogle Scholar
  96. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939CrossRefGoogle Scholar
  97. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86:8902–8905PubMedCrossRefPubMedCentralGoogle Scholar
  98. Wang X, Cao L, Lu FS, Meziani MJ, Li HT, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun YP (2009) Photoinduced electron transfers with carbon dots. Chem Commun 25:3774–3776CrossRefGoogle Scholar
  99. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009a) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80PubMedCrossRefPubMedCentralGoogle Scholar
  100. Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W (2011) Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49:3134–3140CrossRefGoogle Scholar
  101. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem 124:9431–9435CrossRefGoogle Scholar
  102. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress on carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734CrossRefGoogle Scholar
  103. Wang Y, Zheng J, Wang J, Yang Y, Liu X (2017a) Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes. Opt Mater 73:319–329CrossRefGoogle Scholar
  104. Wang Z, Long P, Feng Y, Qin C, Feng W (2017b) Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe3+. RSC Adv 7:2810–2816CrossRefGoogle Scholar
  105. Wei J, Liu B, Yin P (2014) Dual functional carbonaceous nanodots exist in a cup of tea. RSC Adv 4:63414–63419CrossRefGoogle Scholar
  106. Wen X, Yu P, Toh YR, Ma X, Tang J (2014) On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem Commun 50:4703–4706CrossRefGoogle Scholar
  107. Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ (2013) One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyxmori silk–natural proteins. J Mater Chem B 1:2868–2873CrossRefGoogle Scholar
  108. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737PubMedCrossRefPubMedCentralGoogle Scholar
  109. Xu M, Li Z, Zhu X, Hu N, Wei H, Yang Z, Zhang Y (2013) Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed Eng 5:65–71CrossRefGoogle Scholar
  110. Xu Y, Liu J, Gao C, Wang E (2014) Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun 48:151–154CrossRefGoogle Scholar
  111. Yan Z, Zhang Z, Chen J (2016) Biomass-based carbon dots: synthesis and application in imatinib determination. Sensors Actuators B Chem 225:469–473CrossRefGoogle Scholar
  112. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yang P, Zhao J, Wang J, Cui H, Li L, Zhu Z (2015) Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv 5:21332–21335CrossRefGoogle Scholar
  114. Yang X, Yang X, Li Z, Li S, Han Y, Chen Y, Bu X, Su C, Xu H, Jiang Y, Lin Q (2015a) Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. J Colloid Interface Sci 456:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  115. Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q (2017) One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 49:1–7CrossRefGoogle Scholar
  116. Yu CY, Xuan TT, Chen YW, Zhao ZJ, Sun Z, Li HL (2015) A facile, green synthesis of highly fluorescent carbon nanoparticles from oatmeal for cell imaging. J Mater Chem C 3:9514–9518CrossRefGoogle Scholar
  117. Yu H, Shi R, Zhao Y, Waterhouse GI, Wu LZ, Tung CH, Zhang T (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28:9454–9477PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yuan Y, Guo B, Hao L, Liu N, Lin Y, Guo W, Li X, Gu B (2017) Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf B Biointerfaces 159:349–359PubMedCrossRefPubMedCentralGoogle Scholar
  119. Zhang J, Yu S (2015) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393CrossRefGoogle Scholar
  120. Zhang Z, Shan Y, Wang J, Ling H, Zang S, Gao W, Zhao Z, Zhang H (2007) Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. J Hazard Mater 147:325–333PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zhang J, Yuan Y, Liang G, Yu SH (2015) Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci 2:1500002CrossRefGoogle Scholar
  122. Zhang L, Zheng W, Tang R, Wang N, Zhang W, Jiang X (2016) Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials 104:269–278PubMedCrossRefPubMedCentralGoogle Scholar
  123. Zhang QQ, Chen BB, Zou HY, Li YF, Huang CZ (2018) Inner filter with carbon quantum dots: a selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron 100:148–154PubMedCrossRefPubMedCentralGoogle Scholar
  124. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118CrossRefGoogle Scholar
  125. Zhao S, Lan M, Zhu X, Xue H, Ng TW, Meng X, Lee CS, Wang P, Zhang W (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060PubMedCrossRefPubMedCentralGoogle Scholar
  126. Zhong D, Miao H, Yang K, Yang X (2016) Carbon dots originated from carnation for fluorescent and colorimetric pH sensing. Mater Lett 166:89–92CrossRefGoogle Scholar
  127. Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zhou M, Zhou Z, Gong A, Zhang Y, Li Q (2015) Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron (III) ions sensors and bioimaging. Talanta 143:107–113PubMedCrossRefPubMedCentralGoogle Scholar
  129. Zhou J, Deng W, Wang Y, Cao X, Chen J, Wang Q, Xu W, Du P, Yu Q, Chen J, Spector M (2016) Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake. Acta Biomater 42:209–219PubMedCrossRefPubMedCentralGoogle Scholar
  130. Zhu CZ, Zhai JF, Dong SJ (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48:9367–9369CrossRefGoogle Scholar
  131. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125:4045–4049CrossRefGoogle Scholar
  132. Zuo J, Jiang T, Zhao X, Xiong X, Xiao S, Zhu Z (2015) Preparation and application of fluorescent carbon dots. J Nanomater 2015:10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lan Ching Sim
    • 1
    Email author
  • Jun Yan Tai
    • 1
  • Jia Min Khor
    • 1
  • Jing Lin Wong
    • 1
  • Jie Yet Lee
    • 1
  • Kah Hon Leong
    • 1
  • Pichiah Saravanan
    • 2
  • Azrina Abd Aziz
    • 3
  1. 1.Department of Environmental Engineering, Faculty of Engineering and Green TechnologyUniversiti Tunku Abdul RahmanKamparMalaysia
  2. 2.Department of Environmental Science and EngineeringIndian Institute of Technology (ISM)DhanbadIndia
  3. 3.Faculty of Engineering TechnologyUniversiti Malaysia PahangKuantanMalaysia

Personalised recommendations